A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures

SUPPLEMENTARY INFORMATION

Authors:

Rabi A. Musah¹*, Edgard O. Espinoza², Robert B. Cody³, Ashton D. Lesiak¹, Earl D. Christensen⁴, Hannah E. Moore⁵, Simin Maleknia⁶ and Falko P. Drijfhout⁵

Affiliations:

¹Department of Chemistry, University at Albany, State University of New York, 1400

Washington Avenue, Albany, NY 12222 USA

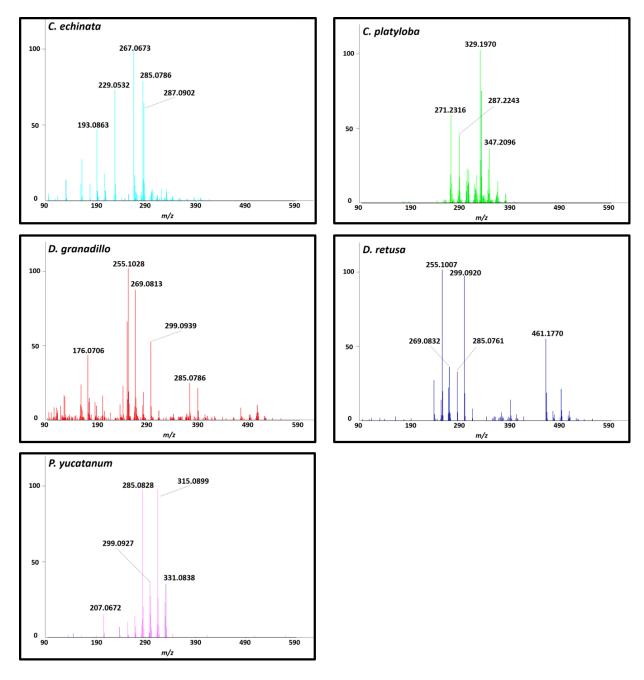
²U.S. National Fish and Wildlife Forensics Laboratory, 1490 East Main Street, Ashland, OR,

97520-1310, USA

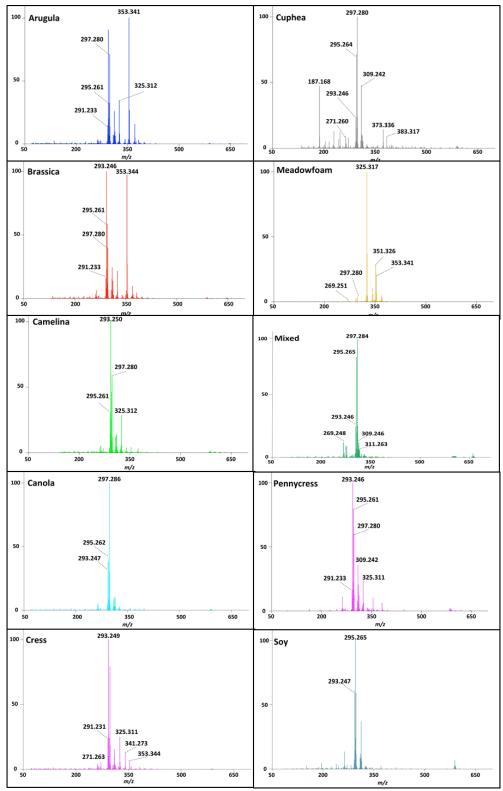
³JEOL USA Inc., 11 Dearborn Road, Peabody, MA 01960 USA

⁴National Renewable Energy Laboratory, 15013 Denver West Parkway, MS-1634, Golden, CO 80401 USA

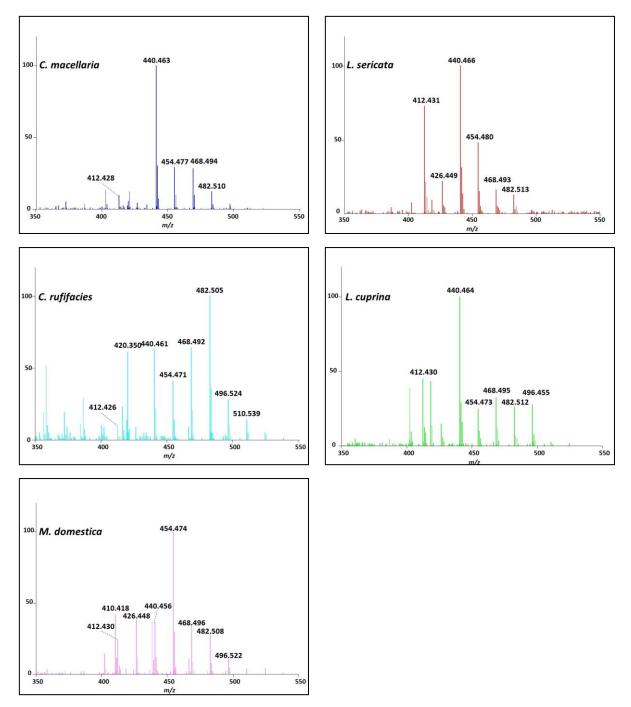
⁵Department of Chemical Ecology, School of Physical and Geographical Science, Keele University, Keele ST5 5BG, UK

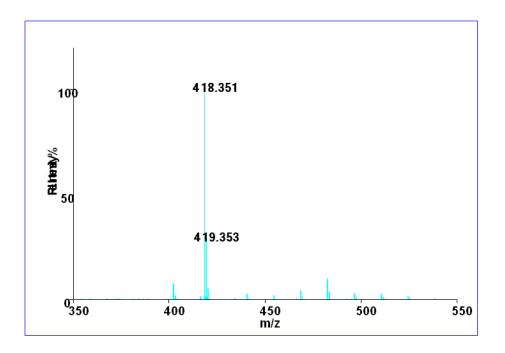

⁶School of Biological, Earth & Environmental Sciences, University of New South Wales,

Sydney, Australia

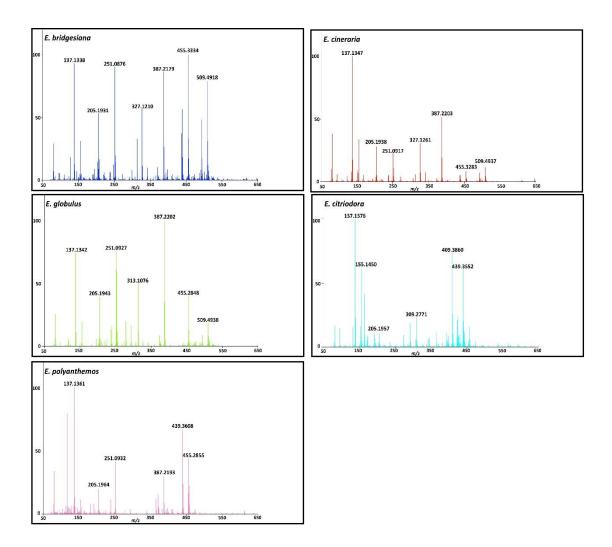

⁷Department of Chemistry, Keele University, United Kingdom ST5 5BG

SUPPLEMENTARY INFORMATION


Supplementary Figure 1. Positive ion mode DART-TOF-MS of *Dalbergia* species. Detailed mass information including m/z values, their corresponding abundances and tentative structural assignments is presented in Supplementary Tables 2a-e. Each spectrum is representative of the species tested. Sample size for each species is given in Supplementary Table 1. The *D. granadillo* samples were authenticated specimens.


Supplementary Figure 2. Positive ion mode DART-TOF-MS of the indicated biofuel feedstocks dissolved in hexane. Detailed mass information including m/z values, their corresponding abundances and tentative structural assignments is presented in Supplementary Table 3. Each spectrum represents a single measurement.

Supplementary Figure 3. DART-TOF mass spectra in negative ion mode of hexane extracts of puparial cases of the indicated flies. Detailed mass information including m/z values, their corresponding abundances and tentative structural assignments is presented in Supplementary Table 4. Each spectrum represents an average of five individual analyses.


Supplementary Figure 4. Mass spectrum of the hexane extract of the Sample B puparial casing unknown. This sample exhibited a strong cholesterol $[M+O_2]^-$ peak (i.e. m/z 418.351). Cluster analysis correctly classified it as being derived from *C. rufifacies* despite the cholesterol interference.

Supplementary Figure 5. Positive ion mode DART-TOF-MS spectra of the indicated *Datura*, *Brugmansia* and *Hyocyamus* species. Each spectrum represents an average of five individual analyses. The molecular formulas corresponding to the indicated high resolution masses are presented in Supplementary Tables 5a-5e.

Supplementary Figure 6. Positive ion mode DART-TOF-MS spectra of leaves of the indicated Eucalypt species. Each spectrum represents an average of five individual analyses. The molecular formulas corresponding to the indicated high resolution masses are presented in Supplementary Tables 6a-6e.

SUPPLEMENTARY TABLES

Supplementary Table 1. Dalbergia species analyzed in this study that have been								
described by the common name "granadillo."								
Geographic	Species	CITES	n	Country of Origin	Source ^a (n)			
Provenance								
S. America	Caesalpinia echinata	App II	18	Brazil	EIEH (1)			
				1 Unknown	FPL (4)			
					CMI (10)			
					APHIS (1)			
					USC (1)			
					SNH (1)			
C. America	Dalbergia retusa	App II	34	20 Mexico	OSU (1)			
				8 Panama	FPL (13)			
				2 Nicaragua	XIB (1)			
				1 Costa Rica	EIEH (19)			
				2 C America				
				1 unknown				
C. America	Dalbergia granadillo	App II	11	8 Mexico	FPL (5)			
				1 Guatemala	XIB (5)			
				1 Nicaragua	CW (1)			
				1 unknown				
C. America	Caesalpinia platyloba		12	Mexico	XIB (2)			
					EIEH (10)			
C. America	Platymiscium		20	Mexico	XIB (6)			
	yucatanum				CMI (14)			

^aSource of the specimens included the USDA Forest Product Laboratory (FPL), USDA Animal and Plant Health Inspection Service (APHIS), Oregon State University Xylarium (OSU), La Xiloteca del Instituto de Biología, UNAM, Mexico City, México (XIB), Eisenbrand Inc. Exotic Hardwoods, Torrance, CA, USA (EIEH) Cook Woods, Klamath Falls, OR, USA (CW), Carlton McLendon Inc., Atlanta, GA (CMI), PFC Shanty Navarro Hurtado, Brazilian Federal Police (SNH), and the Botany collection at the University of South Carolina (USC). Commercially obtained specimens were verified by either anatomical analysis or statistical consensus results with known curated specimens. **Supplementary Tables 2a-c.** Mass spectral data associated with the positive ion mode mass spectra of *Dalbergia* species woods shown in Supplementary Figure 1.

Supplementary Table 2a. DART-TOF-MS data for selected peaks in the spectrum of D.									
retusa shown in S	retusa shown in Supplementary Figure 1.								
Formula ^a	Adduct	Measured	Calculated	Difference ^b	Abundance				
$C_{16}H_{14}O_3^c$	+H⁺	255.1007	255.1021	-1.4	100.0				
$C_{16}H_{12}O_4{}^d$	+H+	269.0832	269.0814	1.8	35.6				
$C_{16}H_{12}O_5^e$	+H⁺	285.0761	285.0763	-0.2	32.4				
C ₁₇ H ₁₄ O ₅ ^f	+H⁺	299.0921	299.0920	-0.1	96.1				
$C_{17}H_{14}O_6{}^{g}$	+H⁺	315.0888	315.0869	1.9	7.9				

^aCompound formulas were consistent with those of the indicated molecules (cited below) that were previously isolated from *Dalbergia* species^{13,14}. ^bMeasured masses fell within 5 mmu of the calculated masses. ^cCompound formula is consistent with previously identified compounds found in *Dalbergia* species, including 4-methoxydalbergione, parvifuran, dalbergichromene, obtusaquinone, 4-hydroxy2-methoxychalcone, and isoparvifuran. ^dCompound formula is consistent with previously identified compounds found in *Dalbergia* species, including formoneetin, isodalbergin, dalbergin, and 7-hydroxy-6-methoxyflavone. ^eCompound formula is consistent with previously identified compounds found in *Dalbergia* species, including biochanin A, prunetin, melanin, calycosin, 3-methoxydaidzein, glycitein, retusin, and maackiain. ^fCompound formula is consistent with previously identified compounds found in *Dalbergia* species, including afrormosin, 8-O-methylretusin. ^gCompound formula is consistent with previously identified compounds found in *Dalbergia* species, including hydroxypterocarpin, onogenin, and 4-methoxymaackiain.

Supplementary Table 2b. DART-TOF-MS data for selected peaks in the spectrum of D.								
granadillo sho	granadillo shown in Supplementary Figure 1.							
Formula ^a	Adduct	Measured	Calculated	Difference ^b	Abundance			
$C_{10}H_9NO_2^c$	+H+	176.0706	176.07115	-0.6	42.9			
$C_{11}H_{11}NO_2^d$	+H+	190.0879	190.0868	1.1	11.8			
$C_{14}H_{12}O_4^e$	+H+	145.0826	245.0814	1.2	22.5			
$C_{16}H_{14}O_3^{f}$	+H⁺	255.1007	255.1021	-1.4	100.0			
$C_{16}H_{12}O_4{}^{g}$	+H+	269.0832	269.0814	1.8	35.6			
$C_{16}H_{12}O_5^h$	+H+	285.0761	285.0763	-0.2	32.4			
$C_{17}H_{14}O_5{}^i$	+H⁺	299.0921	299.0920	-0.1	96.1			
$H_{19}H_{18}O_8{}^j$	+H⁺	375.1123	375.1080	4.3	24.3			

Supplementary Table 2b DAPT TOP MS data for selected peaks in the spectrum of D

^aCompound formulas were consistent with those of the indicated molecules (cited below) that were previously isolated from Dalbergia species^{13,14}. ^bMeasured masses fell within 5 mmu of the calculated masses. ^cCompound formula is consistent with indole-3-acetic acid, previously identified in Dalbergia species. ^dCompound formula is consistent with methyl indole-3-acetate, previously identified in Dalbergia species. «Compound formula is consistent with cearoin, previously identified in Dalbergia species. ^fCompound formula is consistent with previously identified compounds found in Dalbergia species, including 4-methoxydalbergione, parvifuran, dalbergichromene, obtusaquinone, 4-hydroxy2-methoxychalcone, and isoparvifuran. ^gCompound formula is consistent with previously identified compounds found in Dalbergia species, including formoneetin, isodalbergin, dalbergin, and 7-hydroxy-6methoxyflavone. hCompound formula is consistent with previously identified compounds found in Dalbergia species, including biochanin A, prunetin, melanin, calycosin, 3-methoxydaidzein, glycitein, retusin, and maackiain. ⁱCompound formula is consistent with previously identified compounds found in *Dalbergia* species, including afrormosin, 8-O-methylretusin. ^jCompound formula is consistent with previously identified compounds found in Dalbergia species, including, isocaviunin, and caviunin.

Supplementary Table 2c . DART-TOF-MS data for						
observed peaks in the spectra of the <i>Dalbergia</i> species woods <i>C. platyloba, C. echinata</i> and <i>P. yucatanum</i> shown in Supplementary Figure 1.						
<i>C. platyloba</i>	<i>C. echinata</i>	P. yucatanum				
279.232	279.232	285.083				
287.224	287.224	299.093				
329.197	329.197	315.090				
331.213	331.213	331.084				
347.210	347.210					
364.234 364.234						

Supplementary Table 3. Mass spectral data associated with the positive ion mode DART-TOF-MS spectra of hexane extracts of the biodiesel feedstocks shown in Supplementary Figure 2. Unless otherwise indicated, all ions were observed as protonated adducts of fatty acid methyl esters (FAMEs).

Biodiesel feedstock	Formula	Measured	Calculated	Difference	Relative Abundance
	C ₁₉ H ₃₁ O ₂ (C18:4)	291.2327	291.2324	0.3	14.6
	C ₁₉ H ₃₁ O ₂ (C18:4)	293.2464	293.2481	-1.7	90.8
	C ₁₉ H ₃₅ O ₂ (C18:2)	295.2610	295.2637	-2.7	32.5
Arugula	C ₁₉ H ₃₇ O ₂ (C18:1)	297.2803	297.2794	0.9	70.9
	C ₂₁ H ₄₁ O ₂ (C20:1)	325.3118	325.3107	1.1	34.2
	C ₂₃ H ₄₅ O ₂ (C22:1)	353.3415	353.3420	-0.5	100.0
	C ₁₉ H ₃₁ O ₂ (C18:4)	291.2327	291.2324	0.3	15.9
	C ₁₉ H ₃₃ O ₂ (C18:3)	293.2465	293.2481	-1.6	100.0
Brassica	C ₁₉ H ₃₅ O ₂ (C18:2)	295.2612	295.2637	-2.5	58.6
	C ₁₉ H ₃₇ O ₂ (C18:1)	297.2801	297.2794	0.7	39.5
	C ₂₃ H ₄₅ O ₂ (C22:1)	353.3441	353.3420	2.1	97.4
	C ₁₉ H ₃₃ O ₂ (C18:3)	293.2497	293.2481	1.6	100.0
	C ₁₉ H ₃₅ O ₂ (C18:2)	295.2609	295.2637	-2.8	46.4
Camelina	C ₁₉ H ₃₇ O ₂ (C18:1)	297.2801	297.2794	0.7	59.1
	C ₂₁ H ₄₁ O ₂ (C20:1)	325.3117	325.3107	1.0	28.7
	C ₁₉ H ₃₃ O ₂ (C18:3)	293.2473	293.2481	-0.8	37.8
Canola	C ₁₉ H ₃₅ O ₂ (C18:2)	295.2622	295.2637	-1.5	40.8
	C ₁₉ H ₃₇ O ₂ (C18:1)	297.2828	297.2794	3.4	100.0
	C ₁₇ H ₃₅ O ₂ (C16:0)	271.2630	271.2637	-0.7	5.5
	C ₁₉ H ₃₁ O ₂ (C18:4)	291.2311	291.2324	-1.3	23.7
Cress	C ₁₉ H ₃₃ O ₂ (C18:3)	293.2488	293.2481	0.7	100.0
	C ₂₁ H ₄₁ O ₂ (C20:1)	325.3106	325.3107	-0.1	25.0
	C ₂₃ H ₄₅ O ₂ (C22:1)	353.3435	353.3420	1.5	6.5
	C ₁₁ H ₂₃ O ₂ (C10:0)	187.1684	187.1698	-1.4	47.4
	C ₁₇ H ₃₅ O ₂ (C16:0)	271.2603	271.2637	-3.4	8.0
C share	C ₁₉ H ₃₃ O ₂ (C18:3)	293.2455	293.2481	-2.6	23.7
Cuphea	C ₁₉ H ₃₅ O ₂ (C18:2)	295.2638	295.2637	0.1	71.5
	C ₁₉ H ₃₇ O ₂ (C18:1)	297.2799	297.2794	0.5	100.0
	C ₁₉ H ₃₃ O ₃ ^b	309.2419	309.2430	-1.1	48.0
	C ₁₇ H ₃₃ O ₂ (C16:1)	269.2510	269.2481	2.9	1.6
	C ₁₉ H ₃₇ O ₂ (C18:1)	297.2805	297.2794	1.1	4.0
Meadowfoam	C ₂₁ H ₄₁ O ₂ (C20:1)	325.3168	325.3107	6.1	100.0
	C ₂₃ H ₄₃ O ₂ (C22:2)	351.3256	351.3263	-0.7	28.2
	C ₂₃ H ₄₅ O ₂ (C22:1)	353.3413	353.3420	-0.7	20.7
Mixed	C ₁₇ H ₃₃ O ₂ (C16:1)	269.2476	269.2481	-0.5	10.0
Mixed	C ₁₉ H ₃₃ O ₂ (C18:3)	293.2464	293.2481	-1.7	26.3

	C ₁₉ H ₃₅ O ₂ (C18:2)	295.2651	295.2637	1.4	84.9
	C ₁₉ H ₃₇ O ₂ (C18:1)	297.2843	297.2794	4.9	100.0
	$C_{19}H_{33}O_3{}^b$	309.2465	309.2430	3.5	14.8
	$C_{19}H_{35}O_{3}{}^{b}$	311.2627	311.2586	4.1	10.4
	C ₁₉ H ₃₁ O ₂ (C18:4)	291.2326	291.2324	0.2	16.1
	C ₁₉ H ₃₃ O ₂ (C18:3)	293.2462	293.2481	-1.9	100.0
Doppycross	C ₁₉ H ₃₅ O ₂ (C18:2)	295.2611	295.2637	-2.6	79.7
Pennycress	C ₁₉ H ₃₇ O ₂ (C18:1)	297.2800	297.2794	0.6	60.3
	$C_{19}H_{33}O_{3}{}^{b}$	309.2421	309.2430	-0.9	35.8
	C ₂₁ H ₄₁ O ₂ (C20:1)	325.3113	325.3107	0.6	23.6
Sou	C ₁₉ H ₃₃ O ₂ (C18:3)	293.2466	293.2481	-1.5	60.9
Soy	C ₁₉ H ₃₅ O ₂ (C18:2)	295.2651	295.2637	1.4	100.0
	C ₁₉ H ₃₇ O ₂ (C18:1)	297.2805	297.2794	1.1	59.1

^aThe formula is consistent with this being a monoglyceride. ^bThe formula is consistent with this being an oxo- or hydroxyfatty acid methyl ester. **Supplementary Table 4.** Mass spectral data associated with the negative ion mode DART-TOF-MS spectra of hexane extracts of the insect puparial casings shown in Supplementary Figure 3. All ionized hydrocarbons were observed as O_2^- adducts.

Blowfly species	Formula	Measured	Calculated	Difference	Abundance
	$[C_{27}H_{56} + O_2]^{-1}$	412.426	412.429	-3	10.3
	$[C_{29}H_{60} + O_2]^{-1}$	440.461	440.460	1	62.8
	$[C_{30}H_{62} + O_2]^{-1}$	454.471	454.475	-4	41.0
Chrysomya rufifacies	[C ₃₁ H ₆₄ + O ₂] ⁻	468.492	468.491	1	64.1
	$[C_{32}H_{66} + O_2]^{-1}$	482.505	482.506	-1	100.0
	[C ₃₃ H ₆₈ + O ₂] ⁻	496.524	496.522	2	28.2
	$[C_{34}H_{70} + O_2]^{-1}$	510.539	510.538	1	14.1
	$[C_{27}H_{56} + O_2]^{-1}$	412.431	412.429	2	68.0
	[C ₂₈ H ₅₈ + O ₂] ⁻	426.449	426.444	5	14.9
Lucilia sericata	[C ₂₉ H ₆₀ + O ₂] ⁻	440.466	440.460	6	100.0
	[C ₃₀ H ₆₂ + O ₂] ⁻	454.480	454.475	5	78.9
	[C ₃₁ H ₆₄ + O ₂] ⁻	468.493	468.491	2	35.1
	[C ₃₂ H ₆₆ + O ₂] ⁻	482.513	482.506	7	31.4
	$[C_{27}H_{56} + O_2]^{-1}$	412.430	412.429	1	54.9
	$[C_{29}H_{60} + O_2]^{-1}$	440.464	440.460	4	100.0
L. cuprina	$[C_{30}H_{62} + O_2]^{-1}$	454.473	454.475	-2	19.9
L. cuprinu	$[C_{31}H_{64} + O_2]^{-1}$	468.495	468.491	4	21.0
	[C ₃₂ H ₆₆ + O ₂] ⁻	482.512	482.506	6	16.0
	$[C_{31}H_{60} + O_2]^{-1}$	496.455	496.449	-6	14.2
	$[C_{27}H_{56} + O_2]^{-1}$	412.428	412.429	-1	7.8
	$[C_{29}H_{60} + O_2]^{-1}$	440.463	440.460	3	100.0
Cochliomya macellaria	[C ₃₀ H ₆₂ + O ₂] ⁻	454.477	454.475	2	35.8
	[C ₃₁ H ₆₄ + O ₂] ⁻	468.494	468.491	3	34.6
	$[C_{32}H_{66} + O_2]^{-1}$	482.510	482.506	4	15.1
	$[C_{27}H_{54} + O_2]^{-1}$	410.418	410.412	6	91.6
	$[C_{27}H_{56} + O_2]^{-1}$	412.428	412.429	-1	32.7
	[C ₂₈ H ₅₈ + O ₂] ⁻	426.448	426.444	4	70.6
	[C ₂₉ H ₅₈ + O ₂] ⁻	438.444	438.444	0	54.7
Musca domestica	[C ₂₉ H ₆₀ + O ₂] ⁻	440.456	440.460	-4	51.5
	$[C_{30}H_{62} + O_2]^{-1}$	454.474	454.475	-1	100.0
	$[C_{31}H_{64} + O_2]^{-1}$	468.496	468.491	5	32.8
	$[C_{32}H_{66} + O_2]^{-1}$	482.508	482.506	2	27.8
	[C ₃₃ H ₆₈ + O ₂] ⁻	496.522	496.522	0	12.2

Supplementary Tables 5a – **5e.** Mass spectral data associated with the positive ion DART-TOF-MS spectra of *D. stramonium*, *D. inoxia*, *D. ferox*, *B. arborea* and *H. niger* that are shown in Supplementary Figure 5.

Supplementa	Supplementary Table 5a. DART-TOF-MS data for selected peaks in the spectrum								
of B. arborea	of <i>B. arborea</i> shown in Supplementary Figure 5.								
Formula	Adduct	Measured	Calculated	Difference ^a	Abundance				
$C_8H_{15}NO^b$	$+H^+$	142.1276	142.1232	-4.4	11.4				
$C_8H_{13}NO_2^c$	+H+	156.1024	156.1025	0.1	45.2				
$C_8H_{15}NO_2^d$	+H+	158.1144	158.1181	3.7	39.8				
$C_6H_{12}O_6^e$	$+NH_4^+$	198.1021	198.0978	-4.3	4.2				
$C_{16}H_{19}NO_2^f$	+H+	258.1471	258.1494	2.3	1.1				
$C_{13}H_{21}NO_5^g$	+H+	272.1479	272.1498	2.9	3.0				
$C_{16}H_{21}NO_3{}^h$	+H+	276.1555	276.1600	4.5	6.5				
$C_{16}H_{21}NO_2{}^i$	$+NH_4^+$	277.1886	277.1916	3.0	2.1				
$C_{18}H_{32}O_2{}^j$	+H⁺	281.2440	281.2481	4.1	28.3				
$C_{17}H_{23}NO_3{}^k$	+H+	290.1708	290.1756	4.8	75.8				
$C_{16}H_{19}NO_3^I$	$+NH_4^+$	291.1749	291.1709	-4.0	23.3				
$C_{18}H_{34}O_2{}^m$	$+NH_4^+$	300.2898	300.2903	0.5	5.9				
$C_{17}H_{12}NO_4^n$	$+H^+$	304.1592	304.1549	-4.3	93.1				

^aMeasured masses fell within 5 mmu of the calculated mass.

Supplementary Table 5b. DART-TOF-MS data for selected peaks in the spectrum									
of <i>D. ferox</i> sho	of <i>D. ferox</i> shown in Supplementary Figure 5.								
Formula	Adduct	Measured	Calculated	Difference ^a	Abundance				
$C_8H_{15}NO^b$	$+H^+$	142.1235	142.1232	0.3	100.0				
$C_8H_8O_3^c$	$+H^+$	153.0558	153.0552	0.6	4.4				
$C_8H_{13}NO_2^d$	+H+	156.1017	156.1025	-0.7	3.7				
$C_8H_{15}NO_2^e$	+H⁺	158.1181	158.1181	-0.0	60.0				
$C_6H_{12}O_6^f$	$+NH_4^+$	198.0978	198.0978	1.2	2.3				
$C_{13}H_{21}NO_2^g$	$+H^+$	224.1656	224.1651	0.5	12.3				
$C_{13}H_{21}NO_3^h$	$+H^+$	240.1603	240.1600	0.3	4.4				
$C_{13}H_{21}NO_4^{i}$	+H+	256.1521	256.1549	-2.8	1.2				
$C_{18}H_{32}O_2{}^j$	$+H^+$	281.2453	281.2481	-2.8	10.2				
$C_{18}H_{34}O_2{}^k$	+H⁺	283.2613	283.2637	-2.4	10.6				
$C_{17}H_{12}NO_4^I$	+H⁺	304.1577	304.1549	2.3	32.0				

^aMeasured masses fell within 5 mmu of the calculated mass. ^bCompound formula is consistent with tropine, previously identified in *Datura* species⁴¹. ^cCompound formula is consistent with vanillin, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with scopoline, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with dihydroxytropane, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with dihydroxytropane, previously identified in *Datura* species⁴¹. ^fCompound formula is consistent with hexose sugar, previously identified in *Datura* species⁴¹. ^gCompound formula is consistent with 3-tiglyloxytropane, previously identified in *Datura* species⁴¹. ^hCompound formula is consistent with 3-tiglyloxytropane, previously identified in *Datura* species⁴¹. ⁱCompound formula is consistent with 3-tiglyloxytropane, previously identified in *Datura* species⁴¹. ⁱCompound formula is consistent with 3-tiglyloxytropane, previously identified in *Datura* species⁴¹. ⁱCompound formula is consistent with 3-tigloyloxy-6,7-dihydroxytropane, previously identified in *Datura* species⁴¹. ⁱCompound formula is consistent with linoleic acid, previously identified in *Datura* species⁴². ^kCompound formula is consistent with linoleic acid, previously identified in *Datura* species⁴². ^kCompound formula is consistent with oleic acid, previously identified in *Datura* species⁴². ^kCompound formula is consistent with scopolamine, previously identified in *Datura* species⁴¹.

Supplementa	Supplementary Table 5c. DART-TOF-MS data for selected peaks in the						
spectrum of	D. inoxia s	shown in Sup	plementary F	igure 5.			
Formula	Adduct	Measured	Calculated	Difference ^a	Abundance		
$C_8H_8O_3^b$	+H+	153.0591	153.0552	3.9	1.2		
$C_8H_{13}NO_2^c$	+H+	156.1013	156.1025	-1.1	15.9		
$C_8H_{15}NO_2^d$	+H+	158.1162	158.1181	-1.9	36.2		
$C_6H_{12}O_6^{e}$	$+NH_4^+$	198.0988	198.0978	1.0	7.7		
$C_{16}H_{21}NO_3^f$	+H+	276.1586	276.1600	-1.4	4.1		
$C_{17}H_{21}NO_3{}^{g}$	+H+	288.1571	288.1600	-2.9	1.9		
$C_{17}H_{23}NO_3{}^h$	+H⁺	290.1708	290.1756	-4.8	12.4		
$C_{16}H_{19}NO_3^i$	$+NH_4^+$	291.1745	291.1709	3.6	2.3		
$C_{18}H_{34}O_2{}^j$	$+NH_4^+$	300.2917	300.2903	1.4	2.5		
$C_{17}H_{12}NO_4^k$	+H+	304.1577	304.1549	2.8	100.0		
$C_{17}H_{23}NO_4^I$	+H+	306.1674	306.1705	-3.1	19.2		

^aMeasured masses fell within 5 mmu of the calculated mass. ^bCompound formula is consistent with vanillin, previously identified in *Datura* species⁴³. ^cCompound formula is consistent with scopoline, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with hexose sugar, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with norhyoscyamine, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with norhyoscyamine, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with norhyoscyamine, previously identified in *Datura* species⁴¹. ^gCompound formula is consistent with dihydroaposcopolamine, previously identified in *Datura* species⁴¹. ^gCompound formula is consistent with 3-acetoxy-6,7-epoxytropane, previously identified in *Datura* species⁴². ^kCompound formula is consistent with scopolamine, previously identified in *Datura* species⁴². ^kCompound formula is consistent with holeic acid, previously identified in *Datura* species⁴¹. ^lCompound formula is consistent with scopolamine, previously identified in *Datura* species⁴¹. ^lCompound formula is consistent with hydroxytropane, previously identified in *Datura* species⁴¹. ^lCompound formula is consistent with scopolamine, previously identified in *Datura* species⁴¹. ^lCompound formula is consistent with hydroxytropane, previously identified in *Datura* species⁴¹. ^lCompound formula is consistent with scopolamine, previously identified in *Datura* species⁴¹. ^lCompound formula is consistent with hydroxytropane, previously identified in *Datura* species⁴¹. ^lCompound formula is consistent with scopolamine, previously identified in *Datura* species⁴¹. ^lCompound formula is consistent with hydroxytyoscyamine, previously identified in *Datura* species⁴¹.

Supplementa	Supplementary Table 5d. DART-TOF-MS data for selected peaks in the spectrum							
of D. stramon	<i>ium</i> shown	in Supplemer	ntary Figure 5.					
Formula	Adduct	Measured	Calculated	Difference ^a	Abundance			
C ₈ H ₁₅ NO ^b	+H+	142.1209	142.1232	-2.3	24.9			
C ₈ H ₈ O ₃ ^c	+H⁺	153.0580	153.0552	2.8	4.2			
$C_8H_{13}NO_2^d$	+H⁺	156.0988	156.1025	-3.7	2.8			
$C_8H_{15}NO_2^e$	+H+	158.1151	158.1181	-3.0	12.1			
$C_6H_{12}O_6^{f}$	$+NH_4^+$	198.0979	198.0978	0.1	2.6			
$C_{13}H_{21}NO_2^g$	+H+	224.1649	224.1651	-0.2	5.2			
$C_{17}H_{23}NO_3{}^h$	+H+	290.1740	290.1756	-1.6	100.0			
$C_{18}H_{32}O_2{}^i$	$+NH_4^+$	298.2730	298.2756	-1.6	3.0			
$C_{17}H_{12}NO_4^j$	+H⁺	304.1555	304.1549	0.6	19.2			
$C_{17}H_{23}NO_4^k$	$+H^+$	306.1673	306.1705	-3.2	2.5			

^a Measured masses fell within 5 mmu of the calculated mass. ^bCompound formula is consistent with tropine, previously identified in *Datura* species⁴¹. ^cCompound formula is consistent with vanillin, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with scopoline, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with dihydroxytropane, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with hexose sugar, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with hexose sugar, previously identified in *Datura* species⁴¹. ^eCompound formula is consistent with hexose sugar, previously identified in *Datura* species⁴¹. ^bCompound formula is consistent with 3-tiglyloxytropane, previously identified in *Datura* species⁴¹. ^bCompound formula is consistent with atropine, previously identified in *Datura* species⁴¹. ^bCompound formula is consistent with linoleic acid, previously identified in *Datura* species⁴³. ^jCompound formula is consistent with scopolamine, previously identified in *Datura* species⁴¹. ^bCompound formula is consistent with species⁴¹. ^bCom

Supplementary Table 5e. DART-TOF-MS data for selected peaks in the									
spectrum of	spectrum of <i>H. niger</i> shown in Supplementary Figure 5.								
Formula	Adduct	Measured	Calculated	Difference ^a	Abundance				
C ₇ H ₁₀ ^b	$+H^+$	95.0875	95.0861	1.4	1.7				
C ₇ H ₁₀ ^c	$+NH_4^+$	112.1161	112.1126	3.5	2.6				
$C_8H_{15}NO^d$	$+H^+$	142.1254	142.1232	2.2	97.5				
$C_7H_{13}NO_4^e$	$+H^+$	176.0919	176.0923	-0.4	70.4				
$C_6H_{12}O_6^f$	$+NH_4^+$	198.0965	198.0978	-1.3	27.1				
$C_{13}H_{21}NO_5^g$	$+H^+$	272.1516	272.1498	1.8	3.8				
$C_{18}H_{32}O_2^h$	+H+	281.2437	281.2481	-4.3	61.1				
$C_{17}H_{23}NO_3{}^i$	+H+	290.1719	290.1756	-3.7	67.2				
$C_{16}H_{19}NO_3{}^j$	$+NH_4^+$	291.1750	291.1709	4.1	13.0				
$C_{18}H_{32}O_2^k$	$+NH_4^+$	298.2733	298.2756	-1.3	61.8				
$C_{17}H_{12}NO_4^I$	+H⁺	304.1571	304.1549	2.2	80.8				

^a Measured masses fell within 5 mmu of the calculated mass.

Supplementary Tables 6a-6e. Mass spectral data associated with the positive ion DART-TOF-MS spectra of *E. bridgesiana, E. cineraria, E. globulus, E. citriodora,* and *E. polyanthemos* that are shown in Supplementary Figure 6. The observed molecular formulas are consistent with the tentative compound assignments listed.

Supplementary Table 6a. DART-TOF-MS data for selected peaks in the						
spectrum of <i>E. bridgesiana</i> shown in Supplementary Figure 6. Formula Adduct Measured Calculated Difference ^a Abundance						
		-				
$C_{10}H_{16}^{b}$	+H+	137.1338	137.1330	0.8	92.9	
$C_{10}H_{18}O^{c}$	+H+	155.1416	155.1436	-2.0	31.2	
$C_{15}H_{24}^{d}$	+H+	205.1931	205.1956	-2.5	53.4	
$C_{13}H_{14}O_5^e$	+H+	251.0876	251.0920	-4.4	90.3	
$C_{18}H_{16}O_5^{f}$	+H+	313.1057	313.1076	1.9	32.8	
$C_{19}H_{18}O_5{}^{g}$	+H⁺	327.1210	327.1232	-2.2	56.8	
$C_{23}H_{30}O_5^h$	+H+	387.2179	387.2171	0.8	86.5	
$C_{30}H_{46}O_2{}^i$	+H+	439.3544	439.3576	-3.2	56.5	
j		455.3334	—	_	100.0	

^aMeasured masses fell within 5 mmu of the calculated mass. ^bCompound formula is consistent with previously identified monoterpenes found in *Eucalyptus* species, including camphene, pinene, limonene and thujene^{45,46}. ^cCompound formula is consistent with eucalyptol, previously identified in *Eucalyptus* species^{45,46}. ^dCompound formula is consistent with previously identified sesquiterpenes found in *Eucalyptus* species, including humulene, and caryophyllene^{45,46}. ^eCompound formula is consistent with citrinin, previously identified in *Eucalyptus* species^{45,46}. ^fCompound formula is consistent with isoflavone, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^{h-j} Unknown compounds

Supplementary Table 6b. DART-TOF-MS data for selected peaks in the						
spectrum of <i>E. cineraria</i> shown in Supplementary Figure 6.						
Formula	Adduct	Measured	Calculated	Difference ^a	Abundance	
$C_{10}H_{16}{}^{b}$	+H+	137.1347	137.1330	1.7	100.0	
$C_{10}H_{18}O^{c}$	+H+	155.1421	155.1436	-1.5	33.8	
$C_{15}H_{24}^{d}$	+H+	205.1938	205.1956	-1.8	28.2	
$C_{13}H_{14}O_5^e$	+H+	251.0917	251.0920	-0.3	23.1	
$C_{19}H_{18}O_5^{f}$	+H+	327.1261	327.1232	-2.9	30.9	
$C_{23}H_{30}O_5^{g}$	+H+	387.2203	387.2171	3.2	51.5	
h		455.3283	_	_	100.0	

^a Measured masses fell within 5 mmu of the calculated mass. ^bCompound formula is consistent with previously identified monoterpenes found in *Eucalyptus* species, including camphene, pinene, limonene and thujene^{45,46}. ^cCompound formula is consistent with eucalyptol, previously identified in *Eucalyptus* species^{45,46}. ^dCompound formula is consistent with previously identified sesquiterpenes found in *Eucalyptus* species, including humulene, and caryophyllene^{45,46}. ^eCompound formula is consistent with citrinin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species^{45,46}. ^gCompound formula is consistent with eucalyptin, previously identified in *Eucalyptus* species

Supplementary Table 6c. DART-TOF-MS data for selected peaks in the							
spectrum of	spectrum of <i>E. globulus</i> shown in Supplementary Figure 6.						
Formula	Adduct	Measured	Calculated	Difference ^a	Abundance		
$C_{10}H_{16}{}^{b}$	+H⁺	137.1342	137.1330	1.2	73.8		
C ₁₀ H ₁₈ O ^c	+H⁺	155.1422	155.1436	-0.6	19.2		
$C_{15}H_{24}^{d}$	+H⁺	205.1943	205.1956	-1.3	38.7		
$C_{13}H_{14}O_5^e$	+H⁺	251.0927	251.0920	0.7	74.1		
$C_{18}H_{16}O_5^{f}$	+H⁺	313.1076	313.1076	0.0	49.5		
$C_{23}H_{30}O_5^{g}$	+H⁺	387.2202	387.2171	3.1	100.0		
$C_{28}H_{38}O_5^h$	+H+	455.2848	455.2798	5.0	39.8		

^a Measured masses fell within 5 mmu of the calculated mass. ^bCompound formula is consistent with previously identified monoterpenes found in Eucalyptus species, including camphene, pinene, limonene and thujene^{45,46}. ^cCompound formula is consistent with eucalyptol, previously identified in *Eucalyptus* species^{45,46}. ^dCompound formula is consistent with previously identified sesquiterpenes found in *Eucalyptus* species, including humulene, and caryophyllene^{45,46}. eCompound formula is consistent with citrinin, previously identified in *Eucalyptus* species^{45,46}. ^fCompound formula is consistent with isoflavone, previously identified in *Eucalyptus* species^{45,46}.^g Unknown compound. hCompound formula is consistent with sesquiterpenes, phloroglucinol and dialdehyde diterpenes previously identified in *Eucalyptus* species^{45,46}.

Supplementary Table 6d. DART-TOF-MS data for selected peaks in the spectrum of E.						
<i>citriodora</i> shown in Supplementary Figure 6.						
Formula	Adduct	Measured	Calculated	Difference ^a	Abundance	
$C_{10}H_{16}{}^{b}$	+H+	137.1376	137.1330	4.6	100.0	
C ₁₀ H ₁₈ O ^c	+H⁺	155.1450	155.1436	1.4	61.8	
$C_{15}H_{24}^{d}$	+H+	205.1957	205.1956	0.1	10.7	
$C_{30}H_{46}O_2^e$	+H+	439.3552	439.3576	-2.4	61.1	

^aMeasured masses fell within 5 mmu of the calculated mass. ^bCompound formula is consistent with previously identified monoterpenes found in *Eucalyptus* species, including camphene, pinene, limonene and thujene^{45,46}. ^cCompound formula is consistent with eucalyptol, previously identified in *Eucalyptus* species^{45,46}. ^dCompound formula is consistent with previously identified sequiterpenes found in *Eucalyptus* species, including humulene, and caryophyllene. ^{45,46} ^eUnknown compound.

spectrum of <i>E. polyanthemos</i> shown in Supplementary Figure 6.						
Formula	Adduct	Measured	Calculated	Difference ^a	Abundance	
$C_7 H_{11}^{b}$	+H+	95.0921	95.0861	6.0	81.0	
$C_{10}H_{16}^{c}$	+H⁺	137.1361	137.1330	3.1	100.0	
$C_{15}H_{24}^{d}$	+H⁺	205.1957	205.1956	0.1	19.4	
$C_{13}H_{14}O_5^e$	+H⁺	251.0932	251.0920	1.2	41.5	
$C_{23}H_{30}O_5^{f}$	+H⁺	387.2193	387.2171	2.2	30.0	
$C_{28}H_{38}O_5{}^{g}$	+H⁺	455.2855	255.2798	5.7		
$C_{30}H_{48}O_3{}^h$	+H⁺	457.3675	457.3682	-0.7	22.1	

Supplementary Table 6e. DART-TOF-MS data for selected peaks in the spectrum of *E. polyanthemos* shown in Supplementary Figure 6.

^aWith the exception of the sesquiterpene fragment, measured masses fell within 5 mmu of the calculated masses. ^bCompound formula is consistent with a sesquiterpene fragment. ^cCompound formula is consistent with previously identified monoterpenes found in *Eucalyptus* species, including camphene, pinene, limonene and thujene^{45,46}. ^dCompound formula is consistent with previously identified sesquiterpenes found in *Eucalyptus* species, including humulene, and caryophyllene^{45,46}. ^eCompound formula is consistent with citrinin, previously identified in *Eucalyptus* species^{45,46}. ^fUnknown compound. ^gCompound formula is consistent with sesquiterpenes, phloroglucinol and dialdehyde diterpenes previously identified in *Eucalyptus* species^{45,46}. ^hCompound formula is consistent with betulinic, oleanolic or ursolic acid, previously identified in *Eucalyptus* species⁴⁷.