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A B S T R A C T

Plants that produce atropine and scopolamine fall under several genera within the nightshade family. Both
atropine and scopolamine are used clinically, but they are also important in a forensics context because they are
abused recreationally for their psychoactive properties. The accurate species attribution of these plants, which
are related taxonomically, and which all contain the same characteristic biomarkers, is a challenging problem in
both forensics and horticulture, as the plants are not only mind-altering, but are also important in landscaping as
ornamentals. Ambient ionization mass spectrometry in combination with a hierarchical classification workflow
is shown to enable species identification of these plants. The hierarchical classification simplifies the classifi-
cation problem to primarily consider the subset of models that account for the hierarchy taxonomy, instead of
having it be based on discrimination between species using a single flat classification model. Accordingly, the
seeds of 24 nightshade plant species spanning 5 genera (i.e. Atropa, Brugmansia, Datura, Hyocyamus and
Mandragora), were analyzed by direct analysis in real time-high resolution mass spectrometry (DART-HRMS)
with minimal sample preparation required. During the training phase using a top-down hierarchical classifi-
cation algorithm, the best set of discriminating features were selected and evaluated with a partial least square-
discriminant analysis (PLS-DA) classifier to discriminate and visualize the data. The method yields species
identity through a class hierarchy, and reveals the most significant markers for differentiation. The overall
accuracy of the approach for species identification was 95% and 96% using 100X bootstrapping validation and
test samples respectively. The method can be extended for the rapid identification of an infinite number of plant
species.

1. Introduction

The import of plants as reservoirs of useful compounds is ex-
emplified in part by the observation that ∼50% of the drugs approved
for clinical use over the last 30 years are either directly from or are
semi-synthetic derivatives of molecules from plants [1]. While plant-
inspired medicines are often manufactured by synthetic methods, there
remain a number of natural products in current clinical use whose
synthesis by laboratory methods remains economically unfeasible, and
in such cases, they are still isolated from plant tissue. For this reason,
the ability to readily detect such compounds, track their occurrence in
different parts of the plant, and perform comparative analysis of mul-
tiple species that contain the compounds of interest, remains a high
priority.
Analysis of the alkaloids in Solanaceae family plants serves as a case

in point. Several genera within this family contain species that produce
the clinically-relevant and structurally-related tropane alkaloids atro-
pine and scopolamine. These include Atropa, Brugmansia, Datura,
Hyocyamus and Mandragora. Plant species represented by these genera,
such as Atropa belladonna (aka deadly nightshade), Brugmansia suaveo-
lens, Datura stramonium (aka Jimson weed), Hyocyamus niger (aka
henbane) and Mandragora officinarum (aka mandrake) have been
known since ancient times and have been referenced in the literature of
Socrates, Aristotle, Hippocrates, Theophrastus, Avicenna [2–4],
Dioscorides [4] and Pliny the Elder. These plants were used to induce
sleep [5–7], as ingredients in the first surgical anesthetics [8], as aph-
rodisiacs, as beauty aids (e.g. for the dilation of pupils to enhance the
appearance of the eyes) and even to commit murder, among many other
uses. The advent of modern chemistry revealed atropine and scopola-
mine to be major components responsible for many of their therapeutic
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effects, and showed them to be anticholinergics. While the primary use
of these plants in ancient times was medicinal and as a tool of
“witchcraft” [9–11], recent years have witnessed exploitation of their
mind-altering characteristics for recreational use [12–15] and in crim-
inal activity (e.g. robberies [16], rendering victims in a conscious but
compliant state during sexual assault [12,17,18], poisoning). However,
the plants are also of horticultural importance, as the flowers of some
species, such as several in the Datura and Brugmansia genera, are highly
prized for their large inverted trumpet shapes.
Both atropine and scopolamine are used clinically [19], and much of

their production relies on isolation from plant tissue because synthetic
approaches remain cost prohibitive. While the compounds themselves
are controlled substances in many countries, the plants from which they
are derived usually are not. The alarming increase in the use of the
plants to “legally” induce altered states of consciousness has been noted
by the United Nations Office on Drugs and Crime, which has designated
plants such as Datura stramonium, as “plants of concern”. Because of
their ubiquity as ornamentals, reservoirs of clinically important drugs,
and use as hallucinogens and as poisons, Solanaceae genus products
appear in diverse forms that can be very difficult to identify, particu-
larly in the absence of prior knowledge of their source. For example, the
seeds of multiple species that are used in horticulture and for the pre-
paration of psychoactive brews look almost identical in several cases.
Since atropine and scopolamine appear prominently throughout the
plant matrix, species attribution based on the mere observation of these
compounds in a sample is not definitive. Identification is even more
difficult if the seeds or other plant material has been processed, because
this makes determination of the plant from which it was derived nearly
impossible to trace. Since the genomes of the majority of these plants
have not been mapped, DNA analysis cannot usually be used as a means
of identification.
In principle, it should be possible to determine the species from

which a given Solanaceae genus product is derived based on its small
molecule profile, since this would be expected to be defined by its
unique genome. Recently, Liu et al. demonstrated that chemometric
processing of Brassicacea spp. volatiles could be used to infer species
identity [20]. Similarly, Lesiak et al. showed that statistical analysis
processing of the mass spectrometric profiles of members of the Datura
genus could be used to accurately determine species identity [21].
However, species attribution in the case of complex plant matrices
derived from multiple genera, and which include numerous species that
all contain the same characteristic biomarkers, is a significantly more
complex problem, the solution to which has remained elusive. Tropane
alkaloid-containing Solanaceae species plants represent such an ex-
ample, since there are multiple genera and many more species, all
containing atropine and scopolamine. Given that the agricultural,
medicinal and forensic importance of the species within the constituent
genera are intimately tied to species identity, it is highly desirable to be
able to accomplish (in a single experiment, ideally): (1) determination
of the presence of compounds of interest; (2) ability to distinguish be-
tween plant materials that contain identical biomarkers but which re-
present different species; (3) monitor the content of biomarkers of in-
terest rapidly and in real-time; and (4) confirm species identity.
Additional desirable attributes of such a method include rapid sampling
with minimal to no sample preparation. While a number of methods
exist for the accomplishment of a subset of these [22–27], an approach
that would also enable simultaneous species identification continues to
be a formidable challenge.
An approach proposed to circumvent these challenges is direct

analysis in real time-high resolution mass spectrometry (DART-HRMS).
This method has the advantage of requiring little sample preparation,
and a mass spectrum can be acquired in under 1 min. Furthermore, it
has been previously shown that the overall chemical fingerprint ac-
quired by DART-HRMS can be used for species identification [21].The
work described herein tested 24 atropine and scopolamin-containing
plant seeds spanning 5 genera. We demonstrate that their DART-HRMS-

derived chemical profiles exhibit intraspecies similarities and inter-
species differences, and that the mass spectra can be processed using a
statistical analysis workflow, to furnish not only genus, but also species
identity. In the course of this work, a robust mass spectrometric data-
base of atropine/scopolamine containing plant species was built, and it
is shown that it can be used to rapidly and reliably screen direct ana-
lysis in real time-high resolution mass spectrometry data generated
from seed unknowns, to accurately determine species identity. Fur-
thermore, the samples can be analyzed directly with no pretreatment
required. Species-level classification was accomplished by: (1) design of
a top-down hierarchical classification approach for the training of a
number of multi-class models, with consideration of the hierarchical
relationships between samples at the genus and species levels; and (2)
discovery of species-specific diagnostic masses that were optimal in
enabling discrimination between classes. The proposed approach can be
readily extended for the rapid identification of an infinite number of
plant species.

2. Materials and methods

2.1. Materials

Samples were comprised of 219 seeds from nightshade family
plants. The multiple vendors from whom the samples were acquired are
listed in Table S1. The genera and species studied are listed in Scheme 1
(see Sample overview-Taxonomic relationships), which also provides
an outline of the approach taken to accomplish species classification.
The following 5 genera were represented: Atropa (38 samples), Brug-
mansia (46 samples), Datura (81 samples), Hyoscyamus (36 samples),
and Mandragora (18 samples). The number of species analyzed within
each genus were as follows: Atropa (3 species): A. baetica, A. belladonna
and A. komarovii; Brugmansia (5 species): B. arborea, B. aurea, B. san-
guinea, B. suaveolens and B. versicolor; Datura (9 species): D. ceratocaula,
D. discolor, D. ferox, D. inoxia, D. leichhardtii, D. metel, D. quercifolia, D.
stramonium and D. wrightii; Hyoscyamus (5 species): H. albus, H. aureus,
H. muticus, H. niger and H. pusillus; Mandragora (2 species): M. au-
tumnalis and M. officinarum.

2.2. Instrumentation

Mass spectral data were collected in positive-ion mode over the
mass range m/z 40–1100 using a DART-SVP ion source (IonSense,
Saugus, MA, USA) coupled to a JEOL AccuTOF mass spectrometer
(JEOL USA, Peabody, MA, USA) with a resolving power of 6000 FWHM.
The helium gas flow rate for the DART ion source was set to 2.0 L/min,
and the gas heater temperature and the DART ion source grid voltage
were set to 350 °C and 50 V respectively. The optimal setting for the
ring lens, orifice 1, orifice 2, and peaks voltages were 5, 20, 5 and 400 V
respectively. Polyethylene glycol 600 (PEG) (Sigma-Aldrich,
Burlington, MA, USA) was used as a mass callibrant. For DART-HRMS
analysis, each seed was divided into four segments using a razor blade
and each of the pieces was sampled directly by presenting it to the
open-air space between the ion source and mass spectrometer inlet
using a pair of stainless steel tweezers. The generated DART-HRMS
spectra for each sample represent the average of the spectra of the four
seed segments. Step 1 in Scheme 1 shows a representative DART-HRMS
spectrum of a seed sample. The Mass spectral data were stored in text
format after performing data processing steps including background
subtraction, mass calibration with PEG 600 and peak centroiding using
TSSPro3 software (Schrader Analytical Labs, Detroit, MI, USA). The raw
spectral data, in the form of two column tables comprised of m/z and
relative intensity values respectively for the detected peaks, were im-
ported into MATLAB 9. 3. 0, R2017b Software (The MathWorks, Natick,
MA, USA) for multivariate statistical analysis.
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2.3. Statistical analysis

Multivariate statistical analysis methods were applied to the mass
spectral data acquired from plant samples to achieve discrimination
between species and reveal the presence of diagnostic markers. The
overall approach is outlined in Steps 2 through 5, presented in Scheme
1. These steps are described below:
Step 2: Following DART-HRMS analysis (i.e. Step 1), a subset of the

data, comprised of 186 randomly selected sample spectra (85% of the
total number) were used for development of the training model, and the
remaining 32 samples (i.e. 15%) were subsequently used to test the
developed approach. Within the training subset, the number of samples
from each species was based on the relative proportions of the species
that were represented in a given genus. For example, 31 samples were
selected from a total of 38 Atropa seeds for the training data. The mass
spectra of the training set were aligned in a matrix according to
common m/z values (i.e. binned-see Step 2). In this process, the optimal
bin width was determined to be within± 15 mmu of the observed
mass, and the relative abundance threshold was set to 0.2% of the
maximum intensity. This furnished a matrix of dimension 186 (i.e.
number of samples) by 2976 (number of m/z values), and which re-
presented all of the tropane alkaloid-containing plant (TAP) species
studied.
Step 3: Hierarchical classification simplfies the classification pro-

blem such that the primary consideration is the subset of classification
models that account for the hierarchy taxonomy, instead of being based
on specie discrimination accomplished through use of a flat classifica-
tion model [28]. Therefore, inspired by the taxonomic relationships
between samples in terms of genera within a family and species within
each genus, a “top-down” tree structure-hierarchical classification
workflow, which enabled visualization, discrimination and prediction
of sample classes was used. This was accomplished using an in-house
written MATLAB program applied to the matrix generated in Step 2. As
illustrated in Scheme 1, Step 3, the classification tree was designed to
have two discrimination levels (one for genus and one for species). Its
first node, termed “A” represents the Nightshade (i.e. Solanaceae) fa-
mily level. From it, the nodes of the first level of discrimination, re-
presentative of the various genera, were derived (i.e. B, C, D, E and F,
denoting Atropa, Brugmansia, Datura, Hyocyamus and Mandragora re-
spectively). Within these, the species classes could be observed and

distinguished in the second level of discrimination.
Step 4: Information on the attributes within the dataset that enabled

accomplishment of the clustering observed by hierarchical clustering
analysis (HCA), was extracted through a series of iterative operations
summarized in Scheme 1, Step 4. These operations were performed on
the data representative of each node, in order to further reduce the
dimensionality of the data to contain the best features that enabled
discrimination between genera and species. These in turn could then be
used to classify sample unknowns. First, each node dataset was nor-
malized, with the optimal normalization method being determined
through subjection of the data to msnorm, autoscaling and mean cen-
tering approaches. Following determination of the best normalization
method in each case, outliers were detected by performing principal
component analysis (PCA), and assessing the PCA results by using the
Hotelling's T-squared test on the first two PCs. Best feature selection
from the resulting reduced data matrices was accomplished by sub-
window permutation analysis (SPA) [29], using PLS-DA as the under-
lying classifier. In SPA, the number of Monte Carlo simulations was set
to 500, with the training dataset (∼85% of samples) and m/z values
(150) being sampled in each step. The resulting matrices (representing
the post-SPA dataset) were analyzed by cross validated PLS-DA to find
the optimal number of latent variables (LVs) required to create a PLS-
DA model. The remaining 15% of samples (i.e. the validation dataset)
were permuted and analyzed by PLS-DA to investigate the prediction
performance of the individual variables. The root mean squared error
(RMSE) of prediction values that were observed in this process were
recorded and used to calculate p-values and the conditional synergetic
score (COSS) value (COSS=− log10 (p)) for variable importance, with
higher scores reflecting higher variable importance. A variable with
p≤0.05 has a COSS of ≥1.3. The training dataset was further reduced
by using those variables with the higher COSSs. It should be noted that
to select the optimum number of the best features revealed by SPA, m/z
values sorted in order of descending COSS value were analyzed in an
iterative manner, starting from 10, and increasing by increments of 10,
to a total of 300. Finally, to eliminate variance that was not correlated
to a discriminative response (i.e. in order to address the possibility that
the eliminated variance might be correlated with within class variances,
or represent a proportion of the background that was corrected in
earlier steps), orthogonal signal correction (OSC) [30] was im-
plemented. This operation was also performed iteratively, in that from

Scheme 1. Workflow devised for the analysis and identifictaion of plant species in the nightshade family.
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1 up to 4 (up to the maximum number of classes in classification pro-
blems with lower than 5 classes) within each node were analyzed to
find the optimum number to use. For example, orthogonal components
in the range of 1 through 3 were examined for node B data, while from
1 to 4 were analyzed for node D data. The results of the iterative op-
erations performed in Step 4 were 6 matrices representing nodes A, B,
C, D, E and F, of dimensions 186× 170; 31× 40; 38×50; 71×80;
31×30; and 15×15 respectively. It should be noted that for each
iteration, assessment of the best pre-processing approach was validated
by 5-fold cross validation, and determination of the accuracy of class
prediction using test dataset samples (i.e. the subset of 15% of the
samples that were reserved for testing the models).
Step 5: The reduced data matrices generated in Step 4 served as the

input for Step 5. Two operations were performed on this data: PLS-DA
and sparse principle component analysis (SPCA). The former was per-
formed in order to accomplish sample classification and prediction. The
number of LVs for PLS-DA was set to the number of components that
were found to be optimal. SPCA [31] was used to aid visualization of
the best discriminating features in each node. It uses a lasso (elastic net)
to produce modified principal components with sparse loadings. In
summary, to reveal the m/z values with the most potential to serve as
markers enabling distinctions between classes to be made, PLS-DA
along with the results of exploration by SPCA were considered for each
node. Then, to rank the identified potential features (i. e. m/z values),
calculated COSS (conditional synergetic score for variable importance)
values from SPA in Step 4, as well as variable importance in projection
(VIP) scores from PLS-DA in Step 5, were considered.

3. Results and discussion

Accomplishment of discrimination between species of tropane al-
kaloid containing seeds using DART-HRMS data was of interest in this
study. The 219 seeds of species in five genera, namely Atropa,
Brugmansia, Datura, Hyoscyamus, and Mandragora were investigated.
Although mass measurements were made in the range m/z 40–1100,
the data actually used were in the m/z range of 40-700, since the masses
above 700 were not informative (i.e. they did not enhance the pre-
dictive capacity of the model). Fig. 1Panels I through V displays aver-
aged composite DART mass spectra of the species within the indicated
genera (i.e. Atropa, Brugmansia, Datura, Hyoscyamus and Mandragora
respectively). At first glance, the spectra representing the pairs Hyos-
cyamus/Mandragora (Panels IV and V), and Brugmansia/Datura (Panels
II and III) appear very similar. In each of the panels, the most prominent
m/z values are labeled and include 124.11, 193.06 and 290.17 for
Atropa; 144.09, 158.11, 174.11 and 304.15 for Brugmansia; 142.12,
174.11, 290.17 and 304.15 for Datura; 127.04, 281.24, 290.17 and
298.27 for Hyoscyamus and 61.03, 90.08, 96.04, 127.04, 142.12,
145.05, 281.24, 290.17 and 298.27 for Mandragora. With the exception
of m/z 61.03 which was absent in Datura, the five genera contained (to
differing extents) all of the aforementioned prominent peaks.
Representative mass spectra of the 24 species analyzed in this study

are shown in Fig. S1, and they illustrate that m/z 290.2 and 304.2 (for
protonated atropine and scopolamine respectively) are prominent in
most samples. Atropine was the base peak in the Atropa genus, and it
was also very prominent in Datura, Hyoscyamus and Mandragora seeds.
Scopolamine was well-represented in Datura, Brugmansia and Hyos-
cyamus genera. Confirmation of the presence of scopolamine and
atropine was accomplished through in source collision induced dis-
sociation (CID) experiments as previously described [21].
As outlined in Scheme 1-Step 2, a data matrix of dimension

186×2976 (termed “Tropane Alkaloid Plants” and abbreviated “TAP”)
was generated to begin development of a model to accomplish species
discrimination. The first number in the matrix refers to the number of
spectra (i.e. observations) and the second, the number of m/z values
(i.e. variables). The matrix was subjected to HCA, and the resulting
“top-down” hierarchical classification tree is presented in Scheme 1-

Step 3. Using HCA, the data were explored to assess the similarities
between the represented genera and species (i.e. the hierarchical re-
lationships within the family members) based on the DART-HRMS data.
The species spectral replicates were scaled using the msnorm function in
MATLAB, and then averaged to create a new matrix with dimension
24× 2976. HCA was applied to the first principal component (PC) re-
sulting from PCA. This PC accounted for ∼50% of the observed var-
iance. The plant species clustered within subgroups based on the Eu-
clidean distance using the unweighted average distance (UPGMA)
method. Fig. 2 illustrates the resulting dendrogram which shows clus-
tering as a function of species and provides an indication of the relative
closeness/relatedness of the genera. Two main clades were computed
(labeled 1 and 2) and they show a major branch point between Man-
dragora and Hyoscyamus on the one hand, and Atropa, Datura and
Brugmansia respectively on the other. Cluster 1 is divided into the two
subgroups labeled 3 and 4 forMandragora and Hyoscyamus respectively.

Fig. 1. Representative DART-HRMS averaged spectra of the species within the
five studied genera. Atropa (I); Brugmansia (II); Datura (III); Hyoscyamus (IV);
and Mandragora (V).
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Cluster 2 is comprised of the two subgroups 5 (involving the genus
Atropa) and 6, which is split into subgroups 7 and 9 representing the
Datura and Brugmansia genera respectively. The emergence of these
groupings reveals that the chemical profiles of the studied plants are
dissimilar enough to enable classification not only at the genus level,
but also in terms of species. Therefore, the TAP matrix was introduced
into the “top-down” hierarchical classification tree to characterize the
best pre-processing steps (as presented in Scheme 1-Step 4) and the
discriminating set of features for classification with PLS-DA in the 6
classifier nodes labeled A, B, C, D, E, and F in Scheme 1. The nodes A, B,
C, D, E and F specify the classification of 5 genera in the nightshade
family, namely species within the Atropa, Brugmansia, Datura, Hyos-
cyamus, and Mandragora respectively. The suitability of the steps ap-
plied to each node, was confirmed by 5-fold venetian blind cross vali-
dation, and assessment of the accuracy of the test set predictions.
For normalization, scaling the intensities of the peaks in every

spectrum to the maximum intensity of the base peak using the msnorm
function of MATLAB was found to work for the data in all nodes except
the Brugmansia case (node C). For this node, the best normalization
method was found to be autoscaling. Examination of the data by PCA
combined with Hotelling's T-squared test revealed no outliers.
Furthermore, it was determined by OSC that the optimum number of
orthogonal components was 1 for nodes A, B, D, E and F, and 4 for node
C. The application of SPA to each node provided a ranking of the
variables (i. e. m/z values) that were of significance in enabling clas-
sification using the PLS-DA model. From this, 170, 40, 50, 80, 30 and
15 variables were found to be the most effective m/z values for the
classifications in nodes A, B, C, D, E and F respectively. These pre-
processing steps resulted in extraction of the most informative data to
yield matrices with dimensions of 186× 170, 31×40, 38×50,
71×80, 31×30 and 15×15 for nodes A, B, C, D, E, and F respec-
tively. The number of latent variables required to build the PLS-DA
models were found to be 7, 3, 4, 11, 5, and 2 in A, B, C, D, E, and F
nodes respectively. The PLS-DA models explained 85% of the MS
spectral data variance and 84% of the response-variance in node A; 97%
and 90% in node B; 50% and 75% in node C; 97% and 82% in node D;
96% and 87% in node E; and 91% and 98% in node F. The 5-fold cross

validation result details (accuracy and error rate) of the PLS-DA models
are presented in Table S2, while the merits of the discrimination model
for each class (i.e. sensitivity, specificity, and precision) are displayed in
Table S3. The PLS-DA scores (with a specific color used to define each
class) and loadings plots (which indicate the m/z values that correspond
with the loadings coordinates) are illustrated in Figs. S2–S7 for nodes A
through F respectively. The figures made discrimination visually ap-
parent. For example in Fig. S2, the Atropa, Mandragora, Hyoscyamus,
Brugmansia and Datura genera are discriminated from each other based
on the first two latent variables. To examine the overall accuracy of the
trained top-down hierarchical classification algorithm, a 100X boot-
strapping of a random sampling of the training set was performed. In
each repetition of the bootstrapping, 158 out of 186 samples were
randomly resampled to train the model, and the model was then ap-
plied to test the remaining samples (i. e. 28). The results were in-
tegrated and used to compute the hierarchy performance character-
istics. The overall accuracy was determined to be 95% for species
specification using the hierarchical classification tree, while the accu-
racy was 86% for a flat PLS-DA classification for the 24 species. The
validation result details and the merits of the species identification (i. e.
sensitivity, specificity, and precision) are displayed in Table 1. The test
samples (i. e. 32 in number) comprised of 7 Atropa, 8 Brugmansia, 9
Datura, 5 Hyoscyamus and 3 Mandragora species, were used to test the
workflow strategy. The prediction results of the test set are presented in
Table 2. At the genus level, all 32 samples were predicted correctly. At
the species level, all samples in the Atropa, Hyoscyamus andMandragora
genera were correctly predicted using the corresponding nodes. One
Brugmnasia sample (B. suaveolens) and one Datura sample (D. stramo-
nium) were not identified correctly. Overall, these results illustrate that
the model has the ability to predict species identity from seeds with
high accuracy.
The six extracted data sets were analyzed using SPCA to visualize

the structure within each node. SPCA computes the sparse loadings
with many values equal to zero while incorporating distinguishing
structural information between classes. The sparse loadings simplify the
interpretation of the principal components based on a subset of vari-
ables. The two first loading vectors contain non-zero values equal to 20

Fig. 2. Dendrogram representation of HCA results
based on the first principal component from PCA of
the combined species matrix (24× 230). Labels
show the two main clusters and six sub-clusters. The
two main clusters contain genera Mandragora and
Hyoscyamus on the one hand, and Atropa, Datura and
Brugmansia on the other.
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and 10 in node A; 3 and 4 in node B; 25 and 25 in node C; 15 and 8 in
node D; 10 and 4 in node E; and 4 and 4 in node F. The two first
computed principal components explained 43, 61, 25, 71, 57, and 42%
of the variance for the data representative of nodes A, B, C, D, E, and F
respectively. Fig. 3 illustrates the corresponding SPCA scores plots for
PCs 1 and 2. In addition, the SPCA scores and loadings bar plots are
presented in Figs. S8–S13, Panels A and B. These illustrations provide a
way to visualize the discrimination structure between classes, and re-
veal which variables are most discriminative.

3.1. Determination of diagnostic markers

The results show that DART-HRMS-derived chemical signatures can
provide adequate information for classification and identification of the
genera and species of the psychoactive seeds studied here. However, an
important question that remained to be investigated was whichm/z values
(i. e. which molecular components) in the DART-HRMS-derived metabo-
lome profile were responsible for discrimination. To answer this question,
the variable importance ofm/z values that resulted from the application of
SPCA and PLS-DA for each node of the hierarchical classification tree were
examined. The weighted relative importance of m/z values in terms of
SPCA can be extracted from the computed loadings values, which is shown
in Panel B of Figs. S8–S13. Table S4 shows the variables with calculated
PLS-DA VIP scores of>1. In addition, the corresponding COSS values
(resulting from SPA coupled with PLS-DA) are displayed for each variable.
The informative variables revealed by SPA were considered to be those
with COSS values of>1.3.
The data, rendered as heatmaps representing the m/z values asso-

ciated with VIP scores of> 1, are displayed in Fig. 4, along with hor-
izontal and vertical dendrograms representing the correlation between
m/z values and sample identification, respectively. Dendrograms were
computed by HCA based on Euclidean distance and the UPGMA method.
In each of the plots in Fig. 4, the horizontal axis shows the dis-
criminative m/z values, and the vertical axis shows the classes. Colors
(red, green and black) are reflective of the relative intensities of the
indicated m/z values, with red conoting a high value, green a low value
and black, an intensity of zero. From this rendering, the m/z values that
are important in enabling a given species to be distinguished from
others is visually apparent. For example, m/z 174.1148 is relatively
intense (as indicated by the red color corresponding to this mass) for
Datura and Brugmansia, but is of much lower intensity in the other
species (as indicated by the green color) (Fig. 4A). This indicates that it
is important for enabling discrimination between Datura and Brug-
mansia from the other genera. The heat map structure for the Atropa
genus (Fig. 4B) shows that while m/z 193.0501 and 272.1601 are ab-
sent in A. baetica (indicated by the black color), they are present with
high intensities in the two other species. On the other hand, m/z
281.2442 and 298.2717 are of high intensity in A. baetica (red color),
but low intensity for the other two Atropa spsecies. Thus, it is clear that
these four masses are most impactful in enabling discrimination be-
tween A. baetica and the other species (i.e. A. komarovii and A. bella-
donna). On the other hand, m/z 127.0407, 145.0506 and 153.1258
were important in A. komarovii discrimination. Fig. 4C shows the 4
main clusters of variables (indicated in red) that define the relationship
structure between the species in the Brugmansia genus. For the Datura
case (Fig. 4D) the pattern differences were a consequence of specific
masses that were highly correlated to each individual species. Within
the Hyocyamus genus (Fig. 4E), it was apparent that H. niger could be
separated from the other species based on m/z 281.2442. For Man-
dragora (Fig. 4F), the m/z values 381.3498, 290.1726, 145.0506,
130.0521 and 31.0306 had a positive impact on differentiating between
both M. officinarum and M. autumnalis. H. niger can be separated from
other species based on m/z 281.2442 (Fig. 4F). The m/z values
290.1726, 145.0506, 130.0521, 381.3498 and 61.0306 had a positive
impact of differentiating between bothM. officinarum andM. autumnalis
in the Mandragora genus (Fig. 4E).

Table 1
The merits of the 100X bootstrap validation of the trained top-down hier-
archical classification tree used for species identification (i.e. overall accuracy,
sensitivity, specificity, and precision).

Overall accuracy: 0.95

Species Classification model performance

Sensitivity Specificity Precision

A. baetica 0.99 0.99 0.90
A. belladonna 0.98 1 1
A. komarovii 1 1 0.99
B. arborea 1 1 1
B. aurea 0.88 1 1
B. sanguinea 1 1 1
B. suaveolens 1 1 1
B. versicolor 1 1 1
D. ceratocaula 0.81 1 1
D. discolor 1 1 0.98
D. ferox 1 1 1
D. inoxia 0.76 1 0.90
D. leichhardtii 1 1 1
D. metel 1 0.98 0.79
D. quercifolia 0.90 0.99 0.86
D. stramonium 0.96 0.99 0.89
D. wrightii 0.90 1 0.96
H. albus 0.96 1 1
H. aureus 1 0.99 0.87
H. muticus 0.97 1 0.99
H. niger 1 1 0.98
H. pusillus 0.83 1 1
M. autumnalis 1 1 1
M. officinarum 0.97 1 1

Table 2
PLS-DA model prediction results for the test samples (i.e. sample unknowns).
The true (i.e. correct) genus and species labels are listed in the first two col-
umns, and the genus and species-level predictions are listed in the last two
columns. The test samples (32 in total) were randomly selected observations,
with the number of samples of each species (indicated in parentheses) being
reflective of the proportion of that species that was represented in the total
number of samples analyzed in this study.

Test sample true label Test sample predicted label

Genus Species Genus level Species level

Atropa (7a) A. beatica (2) Atropa True
A. belladonna (3) True
A. belladonna (2) True

Brugmansia (8) B. arborea (2) Brugmansia True
B. aurea (2) True
B. sanguinea (2) True
B. suaveolens (1) False
B. versicolor (1) True

Datura (9) D. discolor (1) Datura True
D. ferox (1) True
D. inoxia (1) True
D. leichhardtii (1) True
D. metel (2) True
D. quercifolia (1) True
D. stramonium (1) False
D. wrightii (1) True

Hyoscyamus (5) H. albus (1) Hyoscyamus True
True True
H. aureus (1) True
H. muticus (1) True
H. niger (1) True
H. pusillus (1) True

Mandragora (3) M. autumnalis (1) Mandragora True
M. officinarum (2) True

a The numbers within parentheses indicate the number of each genus and
species in the test samples.
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It is noteworthy that no m/z values unique to a given species were
revealed by in the DART-HRMS analysis. Nevertheless, it is possible,
based on the observation of species-specific small-molecule signatures,

to distinguish between species. The results of PLS-DA and SPCA were
80% similar in revealing the features that were important in enabling
discrimination between features.

Fig. 3. Data visualization in each top-down hierarchical classification tree node using SPCA. The scores plots represent the first two principal components. The
samples corresponding to each class are specified by color.

Fig. 4. The data heatmaps corresponding to the m/z values with PLS-DA/VIP scores of> 1, along with dendrograms illustrating the correlations between m/z values
and samples. Dendrograms were calculated by HCA based on Euclidean distance and the UPGMA method. The relative intensities of for the represented m/z values
were scaled such that the mean is 0 and the standard deviation is 1. Each heat map corresponds with features associated with a single node of the hierarchical
classification tree as follows: (A) Tropane alkaloid-containg plant (TAP), (B) Atropa, (C) Brugmansia, (D) Datura, (E) Hyocyamus, and (F) Mandragora.
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4. Conclusions

We demonstrate that DART-HRMS data in combination with a
hierarchical classification model is an effective approach for identifi-
cation of species of psychoactive plants in the nightshade family. The
general method results in the ability to determine species identity
within a few minutes, as opposed to rearing seeds to maturity to base
species attribution on the gross morphological features of the re-
productive parts (which can take years to accomplish). Here, the
method was applied to differentiation of the seeds of multiple plant
species of related Nightshade (Solanacea) family plants that have the
common alkaloid biomarkers atropine and scopolamine. Using the
metabolome profiles of the seeds that were furnished by DART-HRMS
analysis, a top-down hierarchical classification method was developed
and applied to discriminate and readily visualize the differences be-
tween species. In contrast to the approach of discriminating using a
“flat” classification model, the hierarchical algorithm simplified the
classification problem to the several discrimination models that re-
vealed hierarchical relationships. By the 100X bootstrap validation
method, this increased the accuracy of species identification from 84%
to 95%. Here, the best pre-processing steps and the best set of features
were selected in each classification node using the PLS-DA model.
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