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ABSTRACT: The utilization of entomological specimens such as
larvae (maggots) for the estimation of time since oviposition (i.e., egg
laying) for post mortem interval determination, or for estimation of
time since tissue infestation (in investigations of elder or child care
neglect and animal abuse cases), requires accurate determination of
insect species identity. Because the larvae of multiple species are
visually highly similar and difficult to distinguish, it is customary for
species determination of maggots to be made by rearing them to
maturity so that the gross morphological features of the adult can be
used to accurately identify the species. This is a time-consuming and
resource-intensive process which also requires that the sample be
viable. The situation is further complicated when the maggot mass being sampled is comprised of multiple species. Therefore, a
method for accurate species identification, particularly for mixtures, is needed. It is demonstrated here that direct analysis in real
time−high resolution mass spectrometric (DART-HRMS) analysis of ethanol suspensions containing combinations of maggots
representing Calliphora vicina, Chrysomya ruf ifacies, Lucilia coeruleiviridis, L. sericata, Phormia regina, and Phoridae exhibit highly
reproducible chemical signatures. An aggregated hierarchical conformal predictor applied to a hierarchical classification tree that was
trained against the DART-HRMS data enabled, for the first time, multispecies identification of maggots in mixtures of two, three,
four, five, and six species. The conformal predictor provided label specific regions with confidence limits between 80 and 99% for
species identification. The study demonstrates a novel, rapid, facile, and powerful approach for identification of maggot species in
field-derived samples.

Larva represent one of the immature life stages of flies.
Those that are associated with necrophagous insects (e.g.,

blow flies that colonize decomposing tissue), such as the
members of the Calliphoridae family, utilize remains as a
primary food source. Gravid females, which are able to detect
carrion and corpses within a few minutes of death and from a
distance of up to 2 miles away,1,2 oviposit on the remains.
When the eggs hatch, the emergent larvae consume the tissue
as they progress through the first, second, and third instar
stages, before subsequently pupating. While their importance
in facilitating the decomposition of remains is well-appreciated,
their presence can also reveal several types of information.3 For
example, maggots retrieved from tissue can be used for the
determination of post-mortem interval in death investigations.
In elder and child care abuse and animal neglect cases, maggots
retrieved from infested wounds can provide estimates of the
time frame over which maltreatment occurred. In illegal
hunting/poaching investigations, larvae collected from the

dead animal can be used to develop an accurate timeline of
when the criminal activity occurred.4,5 The reason that such
information can be revealed is due to a combination of the
following factors: (1) blow flies are able to detect the presence
of a corpse or carrion within minutes of death and will lay eggs
(oviposit) shortly after their arrival at the body, and (2) the
insect development life cycle and timeline, which is highly
species dependent and correlated to temperature, humidity,
and other external factors, is well mapped and understood.4,6−8

Thus, for a given species collected at a particular life stage, the
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time since the eggs were laid (and which would provide an
estimate of when death occurred based on the premise that
oviposition on the remains occurred within minutes to a few
hours after death) can be calculated from knowledge of the
species identity and the external factor conditions.9−11

Traditionally, species identity determination is performed by
an entomologist5,12 and is accomplished most often by rearing
immature life stages to maturity so that identification can be
reliably made based on visual inspection of the phenotypic
attributes of the adult.13 This is often required because of the
challenges imposed by the extent to which multiple species
within the same life stage look alike, making species
identification based on visual examination difficult if not
impossible. The ability to use the results of DNA analysis
would be ideal, but the paucity of mapped genomes for
relevant fly species makes this approach impossible in many
cases.14−18 To address this issue, several studies have proposed
alternative more rapid and less resource intensive approaches
to achieve species identification.19−24 Microscopy with and
without staining has been used to magnify the features of eggs
and larvae so that species attribution can be based on
morphological distinctions that are normally microscopic.22−24

A number of preliminary studies have indicated a correlation
between the small-molecule profiles of a given life stage and
species identity.20,21 However, the proof-of-concept successes
that have been achieved so far using such approaches for
species identification were accomplished using single species
samples. In practice, multispecies samples are often encoun-
tered. When entomological samples are procured, they are
usually submerged in aqueous ethanol for storage, often in the
form of multiples of eggs, larvae, or pupae, which can make it
challenging to accurately determine the identities of the species
that are present. Due to their small size and the tackiness of the
egg samples, multiple eggs may remain adhered to one another,
while some distinguishing larval morphological features (i.e.,
spiracular structures, protuberances, etc.) may become difficult
to view. These features may be reduced or no longer visible in
the pupal stage. When feeding, larvae engage in aggregation
behavior that involves hundreds or thousands of individu-
als,25−27 as illustrated in Figure S1, which shows typical feeding
activity of tens of thousands of blow fly larvae. This
aggregation affords a number of benefits, including better
nutrient absorption and enhanced protection against predators
and parasites, as well as more rapid maturation to adulthood as
a consequence of the increases in local temperature that occur
because of aggregation (up to 20 °C above ambient).28

Due to the occurrence of multispecies oviposition at the
same site, maggot masses can be comprised of individuals of a
single or multiple species.26 Since knowledge of the species of
insect is crucial to being able to glean useful information about
infestation, an approach to the determination of the identities
of the species present in mixtures is of high interest. In a
machine learning context, problems of this type, that involve a
combination of several “labels” (in this case, species) for
instance, are known as multilabel problems, and two main
approaches have been developed for the classification of such
systems: problem transformation and algorithm adaptation
methods.29 The former, which, along with its derivatives, are
binary relevance and label powerset approaches, transform the
multilabel classification problem to one or more single-label
classifications. In the study described herein, a novel
hierarchical conformal predictor that uses a problem trans-
formation concept-label powerset method at its core, was

developed to achieve multilabel classification of entomological
samples using DART-HRMS data. The strategy facilitated
determination of the constituents of multispecies samples of
larvae while resolving the complexity (i.e., a multiclass problem
with many (∼44 classes)) and the class imbalance that occurs
in instances where there is a preponderance of one or more
classes over the others in the model. DART-HRMS data were
acquired from analysis of 70% aqueous ethanol suspensions of
individual and mixture combinations of two, three, four, five,
and six species that were acquired in the Manhattan area of
New York.

■ METHODS
Collection and Preservation of Necrophagous Fly

Samples. Blow fly stock colonies of Calliphora vicina,
Chrysomya ruf ifacies, Lucilia coeruleiviridis, L. sericata, Phormia
regina, and Phoridae species were maintained in the laboratory
of Professor Jennifer Rosati at the John Jay College of Criminal
Justice (New York, NY, USA). The details associated with
their establishment and maintenance are as previously
described.20,21

Sample Preparation for DART-HRMS Analysis. It has
been shown previously that the aqueous ethanol suspensions in
which blow fly eggs, larvae, pupae, and adults are stored exhibit
species-specific chemical signatures that can be used to rapidly
identify species.20,21 To investigate whether this approach
could be used to determine the identities of multiple species
(both blow fly and Phorid, with the latter used as a control)
contained within a mixture of larvae that were stored in 70%
aqueous ethanol, a range of mixture suspensions representing
combinations of two, three, four, five, and six species were
prepared for chemical fingerprint analysis. Mixtures represent-
ing a range of proportions of contributing species were used in
order to address the possibility of samples containing unequal
distributions of speciesin other words, to build into the
created model the ability to accurately predict the species
composition in a manner that was independent of whether the
sample was dominated by an overabundance or under
representation of a given species constituent. Therefore,
samples were made by mixing together varying combinations
of the 70% ethanol suspensions of single species (v/v) and
diluting these as necessary with 70% aqueous ethanol to
achieve a final volume of 25 μL. For example, for the two-
species mixture series, where the two species are denoted “A”
and “B,” seven solutions were made in the following volumetric
proportions of A/B/70% aqueous ethanol, respectively:
20:80:0, 45:45:10, 80:20:0, 45:10:45, 10:45:45, 5:10:85, and
10:5:85. The details of the combinations used for all of the
mixture types are listed in Table S1.

Instrument Parameters and Sample Analysis Con-
ditions. A DART-SVP ion source (IonSense, Saugus, MA,
USA) interfaced with a JEOL AccuTOF mass spectrometer
(JEOL USA, Peabody, MA, USA) was used to collect mass
spectral data in positive-ion mode. The optimized instrument
parameter settings were as follows: helium gas flow rate, 2.0 L/
min; gas temperature, 350 °C; DART ion source grid voltage,
50 V; ring lens voltage, 5 V; orifice 1 voltage, 20 V; orifice 2
voltage, 5 V; and peak voltage, 600 V (to detect m/z values
≥60). The samples were analyzed by dipping the closed end of
a melting point capillary tube into the solution and presenting
the coated surface to the open-air space between the mass
spectrometer inlet and ion source. Spectra were collected at a
rate of one spectrum per second over the mass range m/z 60−
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800. For suspensions comprised of individual species samples,
15 of each were created. Each of these was analyzed by DART-
HRMS five times, and the five spectra were averaged to
generate a single representative spectrum. Each of the samples
representative of a given mixture combination and the varying
ratios of its contributing constituents (in a volume of 25 μL
see Table S1) was created in replicates of five. Each of these
replicates was analyzed five times, and the resulting spectra
were averaged to generate a representative spectrum. PEG 600
(PEG; Sigma-Aldrich, Louis, MO, USA) was used as a mass
calibrant.
DART-HRMS Data Processing and Multivariate Stat-

istical Analysis. Mass spectral peak centroiding and back-
ground subtraction were accomplished using TSSPro3
software (Schrader Analytical Laboratories, Detroit, MI,
USA). The peaks corresponding to the ethanol dimer (nominal
m/z 93) and a plasticizer derived from the capillary tubes used
for sampling (m/z 371) were removed from the mass spectra
prior to statistical analysis processing of the data.

The mass spectra were stored in text format and imported
into MATLAB 9.3.0, R2019a software (The MathWorks, Inc.,
Natick, MA, USA) for further analysis. An overview of the data
analysis workflow is presented in Scheme 1. It was comprised
of DART-MS analysis (i.e., Scheme 1, step 1) and data
treatment and statistical analysis processing (Scheme 1, steps 2
through 4). In step 2, the mass spectral data representing
individual species (in replicates of 15 each) were aligned along
common m/z values (i.e., binned). The optimal bin width and
relative abundance threshold cutoff, determined by iterative
application of principal component analysis-discriminant
analysis (PCA-DA) and partial least squares-discriminant
analysis (PLS-DA) algorithms to the mass spectral data
matrices created by varying the bin widths and relative
intensity thresholds from 5 to 10 mmu and 0.1−1%,
respectively, were found to be 10 mmu and 0.2% respectively.
This treatment resulted in a matrix with dimensions of 90 ×
1245. It was mean centered and then subjected to minimum
redundancy maximal relevance (mRMR) feature selection30

(step 3). This step revealed 350 top ranked m/z values that

Scheme 1. An Overview of the Data Analysis Workflow for Multispecies Blow Fly Identification

Scheme 2. Structure of a Top-down Hierarchical Classification Tree for Multispecies Discrimination
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were the most significant for species discrimination of larvae
and individualization of mixture samples. The mass spectra
representative of the larvae mixtures were aligned with the
aforementioned selected m/z values and then scaled with
individual species data to create a data matrix (named “X”
(1889 × 350)) that included data representative of both
individual species and species mixtures. The composite of
samples was divided into 44 label sets defined as follows: each
of the six species represented was classified as a single label
(yielding six single species labels), 15 combinations of two
species, 16 combinations of three species, three combinations
of four species, three combinations of five species, and one
containing all six species. Step 4 encompassed a sequence of
operations that comprised the strategy designed to enable the
prediction of the characteristics of the 44 class labels. Given
that this circumstance can be categorized as a “multi-label”
problem (with 44 labels), a multilabel classification approach
known as the “Powerset method” was applied to convert each
label combination to a single label, in one multiclass problem.
While the samples themselves do not share taxonomic
relationships, they can still be considered as related in
hierarchy based on mixture type. This enabled the use of a
top-down level-based hierarchical classification tree31 in which
several multiclasses could be hierarchically trained, to simplify
the one 44-class problem to seven multiclass problems.
Scheme 2 presents the structure of the resulting hierarchical
classification tree exhibiting two levels of discrimination. In the
first, the samples are differentiated according to mixture type
(i.e., individual species and mixtures of two, three, four, five,
and six species). In the second, five multispecies classes
characterize the label sets of the samples corresponding to each
mixture type, and there was a single class representing the
group that contained the six individual species. In Scheme 2,
the mixture types are color coded, and the samples within
mixture types are illustrated as leaves within the nodes of the
indicated tree branches.
Classification of the samples in the nodes of the classification

tree was accomplished using a feed forward neural network
with nonlinear sigmoid and sof tmax functions for the hidden
and output layers, respectively. A regularization parameter and
early stopping technique were applied to avoid the possibility
of overfitting. The Bayesian optimization technique was
applied to optimize the hyper parameters of the neural
network (i.e., the number of hidden layer nodes, learning rate,
and regularization parameters) to enable high accuracy
prediction. The neural network was retrained 10 times, and
the average of the trained weights was applied to making the
predictions. To define the level of confidence of a predicted
label set using the hierarchical classification tree, the tree was
given an underlying classifier within a conformal prediction
protocol,32 termed the “aggregated inductive Mondrian
conformal predictor.” This approach is outlined in step 4 of
Scheme 1. The data set matrix (1889 × 350) was partitioned
into training (90% of the matrix) and test sets (10% of the
matrix), each of which was composed of randomly chosen
observations. The training set was subjected to 100× bootstrap
resampling without a replacement strategy, to canvass 100
training and calibration sets for the development of a
conformal predictor. In each bootstrap iteration, 25% of the
samples were randomly selected for calibration in order to
evaluate how similar the test samples were to the training
samples.

The remaining samples (i.e., 75%) were used to train the
hierarchical classification tree. Both calibration and test sets
were then predicted by the trained tree. The error prediction
rate was quantified using a nonconformity measure (termed
“α”). Nonconformity measures of calibration sets and test
samples were used to compute p-values for test samples aimed
at estimating the prediction region for test samples. Three
nonconformity measures33 (shown in eqs S1−S3 in Scheme
S1-Appendix 1, Supporting Information) were used in this
study. To assess the class imbalance (i.e., the proportions of
labels within a given multiclass that are significantly different),
which is one of the major problems associated with the label
powerset method, the Mondrian conformal prediction (label
conditional) concept was used in computing the p-value.
Therefore, in computing the p-value for a class-k assignment,
the nonconformity measures of test samples for class k were
compared with the nonconformity measures of the calibration
samples with class k. The result from completion of a bootstrap
run was 100 sets of calculated p-values for the test samples that
were averaged to generate the p-values of the aggregated
conformal predictor. Scheme S1 shows, in detail, the algorithm
of the conformal predictor that was applied to the hierarchical
classification tree. The performance of the conformal
predictor34,35 was assessed based on the test set prediction
using the following merit criteria: multiple prediction rate (E-
criterion), observed fuzziness (OF), error rate, and the “not
assigned” (NA) rate, in the significance level (ε) range of 0−
0.2. The merits are described in Scheme S1-Appendix 2 and
presented in eqs S4−S6.
In order to trust the results of the developed classifier, it is

essential to establish whether or not its high accuracy
predictions occur purely by chance (as an artifact of a small
data size, for example). One way to assess this is to test the
fitting of the model to incorrect labels (also known as y-
permuted labels).36 The observation of a poor fit when this
exercise is applied indicates that the developed classifier is not
fitting to the random variations in the data and that the
predictions are reliable and not occurring by chance. To apply
the y-permutation procedure to the aggregated conformal
predictor developed in this work, the labels of the training
samples in each iteration of the 100× bootstrap resampling
were randomly shuffled 10 times, while the training mass
spectra were left unchanged. The 10 permuted labels and MS
data were then used to train the 10 models that were applied
for prediction of the calibration and test samples. The
performance characteristics for the y-permuted model in each
iteration of the bootstrapping were the average of the
characteristics of the 10 created models. Following the
bootstrapping, the performance of the y-permuted model was
compared with the performance of the normal model (i.e.,
using the data with real labels).
An extended form of t-distributed stochastic neighbor

embedding, termed global stochastic neighbor embedding (g-
SNE), was used to provide a readily interpretable 2-D scatter
plot by which to visualize the performance of the neural
network. Therefore, the features in the hidden layer of the
trained neural network (referred to as the hidden layer feature
space) were projected to the 2-D space of a g-SNE plot.37 The
hidden data structure of the samples was computed by
mapping the samples’ spectra onto the trained network hidden
layer space based on the weights and biases. Utilization of the
neighbor-embedding technique preserves the pairwise sim-
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ilarities of the data points of neighbors by minimizing the
divergence of similarity distributions.

■ RESULTS AND DISCUSSION

The multispecies aggregation of blow fly larvae that occurs in
the context of insect colonization of tissue often results in the
collection of entomological samples comprised of multiple
species. We sought in this work to determine if species
combinations furnished unique chemical signatures that could
enable the identities of the contributing species to be deduced
(for subsequent use in PMI estimation determinations for
example). That this might be possible was inferred from the
observation that individual species of larvae can be identified
and distinguished based on the diagnostic chemical fingerprints
that are exhibited by the aqueous ethanol solutions in which
they are stored.20

Figure S2 displays the DART-HRMS spectra of aqueous
ethanol suspensions of individual species. Following DART
mass spectrum acquisitions, the data were compiled (according
to the procedure described in the DART-HRMS Data
Processing and Multivariate Statistical Analysis section) and
subjected to the proposed hierarchical conformal predictor.
The underlying classification structure is that of a hierarchical
classification tree with six classification nodes and two layers of
discrimination (as shown in Scheme 2). Table S2 shows the
dimensions of the training, calibration, and the test data sets
for the neural networks at each iteration of the boostrap
resampling in the nodes of the classification tree. In addition,
the optimized hyper parameters determined by the Bayesian
method are displayed for each node (Table S2). In order to

more readily visualize the performance of the classification tree,
the hidden layer data structure of the trained neural network in
the classification nodes of the tree was explored by projection
of the training (90% of the original data) and test (the
remaining 10%) data sets in the hidden feature space of the
neural network, onto the 2-D space of a g-SNE plot. The
dimensions of the components of this hidden data set (i.e., for
the individual species, mixtures of two, mixtures of three,
mixtures of four, mixtures of five, and mixtures of six) were
1683 × 15, 78 × 14, 467 × 44, 642 × 37, 209 × 30, and 216 ×
36, respectively. The results, color-coded by species identity
and mixture type, are displayed in Figure 1. The colored circles
and black stars represent training and test samples respectively.
Visual assessment of the results reveals that the model
performs well as demonstrated by the apparent separation of
most classes at both hierarchical levels. The first level of
separation (i.e., mixture type) is illustrated by the samples that
appear within red squares, of which there are six. At this level,
it is apparent that the individual species cluster (turquoise
symbols), and two-, three-, and four-species clusters (indicated
by salmon, yellow, and pink colored symbols, respectively) are
separated from one another. The clusters representing the five-
and six-species mixtures (teal and brown symbols, respectively)
overlap with one another to some extent, indicating that their
mass spectral characteristics are highly similar and may be
difficult to distinguish. Analysis of mixture-type clusters at the
second level of the hierarchy reveals the cluster constituent
species identities. For example, expansion of the two-species
mixture cluster reveals 15 subclusters which are color-coded
according to the identities of the pairs of species of which they
are comprised. While most pairs are separated, there are two

Figure 1. Neural network hidden feature space visualization using g-SNE. The circles and stars show the relative location of the training and test
samples, respectively, in space. The data are color coded by class.
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sets that abut one another: the L. sericata/P. regina and L.
coeruleiviridis/P. regina pairs and the C. ruf ifacies/L. sericata and
C. ruf ifacies/L. coeruleiviridis pairs. The merits of the neural
network models in the absence of a conformal predictor for the
calibration and test samples, determined by 100× bootstrap
resampling, are detailed in Tables S3 and S4, respectively. Each
table presents the performance metrics results for both the
actual data learning and the average of the 10 times y-permuted
data learning. Each row of the table lists the results associated
with one of the classification nodes in the classification tree
according to three criteria that were used to compute the
accuracy of the neural network’s class assignment predictions:
the maximum output value of the neural network, output
values of >0.5, and output values >0.4. The results presented in
Table S3 show that acceptable prediction accuracies were
achieved for the calibration samples. For example, the
maximum accuracy of the mixture type model for prediction
of the calibration samples was 94.4%, which dropped to 92.6%
at the 0.5 threshold and rose to 94.3% at the 0.4 threshold. As
anticipated, the accuracies for the two to five member species
nodes were lower than for individual species because of the
increased chemical complexity of these samples when
compared to the single-species samples.
The result of the application of the y-permuted model was a

dramatic reduction in prediction accuracy, which confirmed
the suitability of the developed neural network models for
discrimination and identification of species mixture composi-
tions. For example, in Table S4, which shows the performance
for the test samples’ prediction, the accuracy of the model for
the highest output value is 93.2% for discrimination of mixture
types, and it remained high at the thresholds of 0.5 and 0.4
(91% and 92.7%, respectively). On the other hand, the
accuracies drop and are extremely poor for the y-permuted
data (38%, 0%, and 0% for the highest output value and at the
thresholds of 0.5 and 0.4, respectively).
While the classification tree did well in performing two levels

of discrimination for the six defined nodes, it would be of
greater practical utility to also have a measure of the
confidence interval associated with test sample predictions.
To accomplish this, the algorithm outlined in Scheme S1 was
applied to the classification tree. A key element of this
algorithm is the estimation of the nonconformity measure (α),
which gives an indication of the extent to which the results for
the test samples deviate from those of the calibration/training
samples. The equations that can be used to calculate the
nonconformity measure are presented as eqs S1−S3. Their
independent application to the data revealed that, while the
results were similar, eq S3 gave a slightly better outcome.
Therefore, eq S3 was used in the algorithm presented in
Scheme S1. The general sequence of steps in Scheme S1 is
more fully described in Scheme S1-Appendix 3.
The output results of bootstrapping in Scheme S1 can be

conveyed in multiple ways, depending upon which attributes of
the model are of interest. These include (a) whether the
magnitude of the aggregate of pglobal and ptype is less than a
given significance level (i.e., pglobal and ptype < ε) or less than the
minimum and maximum of several thresholds (e.g., pglobal and
ptype < min(ε1 and ε2));

38 (b) assessment of pglobal and ptype as
independent entities for the first and second discrimination
levels, respectively (i.e., pglobal < εglobal and ptype < εtype); and (c)
defining a label-specific significance threshold (pglobal

k_g > εk_g and
ptype
k_t > εk_t) as proposed by Vovek et al.39 for the label
conditional conformal predictor. Given our specific interest in

predicting, with knowledge of the confidence level, of the
constituent species identities of complex mixtures, we focused
on option c as shown in Scheme S1. If the p(αglobal

k_g ) > εk_g and
p(αtype

k_g ) > εk_t, the test sample was categorized as class k_g (i.e.,
mixture type) and class k_t (i.e., within mixture type k_g),
where εk_g and εk_t define the significance levels for assignment
of classes k_g and k_t, respectively. The estimated prediction
region τ for each sample included classes with p-values higher
than the defined levels. Therefore, the prediction region can be
empty, or involve single and/or multiple labels. The prediction
is considered to be true if the region involves the true label.
The significance level, which is defined by the investigator,

represents an acceptable error rate. A conformal predictor is
valid if the error rate is less than the significance level (i.e., 1 −
confidence level). In addition, the conformal predictor is
optimal if the estimated region is as small as possible (i.e.,
small E-criterion). A visual rendering of the merits within the
significance levels 0−0.2 is presented in Figure S3, while Table
S5 displays the significance levels with their corresponding
error, multiple prediction, and unassigned rates. The top row
of plots shows the merits for the mixture-type discrimination
levels (i.e., individual species, and mixtures of two, three, four,
five, and six species), while the rows of plots beneath reveal the
merits at the second level of discrimination (i.e., the level
which reveals the specific identities of the constituents of a
given mixture). The red vertical line in each plot demarcates
the significance level that yields the maximum accuracy for
assignment of the class. Thus, each plot in Figure S3 provides
information on the p-values for the label assignment in the
classification tree. For example, in the first plot on the top row
(i.e., the turquois box representing the case of individual
species), it can be seen that the multiple prediction rate is
∼0.25 at the 100% confidence level, which means that, in
principle, at this level, other classes are possible along with the
correct class. At the 0.06 significance level (i.e., the 94%
confidence level), the multiple prediction rate is zero, which
means that the probability of predicting other classes for the
individual label is lower than 0.06. However, the unassigned
rate starts to increase from the 93% confidence level, which
means that the p-value of the correct class for a particular
sample will be lower than 0.07. The error rate (blue circles)
and observed fuzziness (green triangles) overlap at zero at the
significance level 0.06, which is the best possible result (i.e., the
model is 100% accurate for this class). The significance level
0.06 (indicated by the red vertical line) is considered to be the
threshold level for the individual class assignment in the
mixture type, since all merits are equal to zero. There was a
small subset of classes for which the identification error was
high, and in these instances, a theoretical significance level of
0.05 was considered as the threshold. These cases included C.
ruf ifacies/L. sericata and L. sericata/P. regina in the mixtures of
two species node and C. vicina/P. regina/Phoridae in the
mixture of three species node.
Additionally, Table S5 presents the false positive (fp) and

false negative (fn) rates for prediction of test sets for each label
space, in order to confirm the suitability of the selected
significance levels for label assignment. The samples with
multiple and empty prediction regions were not involved in
calculation of fp and fn rates. False positive and false negative
rates reveal type I and type II errors, respectively; type I errors
are generally considered to be more serious than type II errors.
The probability of a type I error is revealed by the significance
level and is set by the investigator. However, there is a balance
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that must be achieved between type I and type II errors. While
the results can be protected against type I errors by choosing a
low significance level, this can lead to an increase of the type II
error.40 The results show that the error is considerable for a
subset of labels. These include: (1) six-species mixture
determination at the first level of discrimination; (2) C.
ruf ifacies/L. sericata and L. sericata/P. regina in the two-
component mixture node (second level discrimination); (3) C.
vicina/P. regina/Phoridae in the three-component mixture node
(second level discrimination); (4) C. ruf ifacies/C. vicina/L.
coeruleiviridis/Phoridae in the four-component mixture node
(second level discrimination); and (5) C. ruf ifacies/C. vicina/L.
coeruleiviridis/L. sericata/P. regina and C. ruf ifacies/C. vicina/L.
coeruleiviridis/L. sericata/Phoridae in the five-component node.
We evaluated the merits of the conformal predictor using y-
permuted labels, correctly anticipating that the fits would yield
poor results. Thus, the reported merits of the conformal
predictor were considered in each classification node based on
the average of 10 × y-permuted modeling. As displayed in
Figure S4, the performance in each node dropped for the y-
permuted data sets. For example, for determination of the
mixture type for the samples comprised of multiple species, the
error and multiple prediction rates were 0.25 and ∼0.74 at a
significance level of 0−0.2, respectively. This shows that the
samples were assigned to incorrect labels or to multiple labels
(∼ four labels in total).
The results demonstrate proof-of-concept for application of

the developed conformal predictor method and DART-HRMS
for identification of the species constituents of complex blow
fly larvae mixtures that are commonly encountered as maggot
masses on decomposing remains or in tissue infestations.

■ CONCLUSIONS

Multispecies samples of blow fly larvae that are commonly
collected in the context of medical, agricultural, forensic, or
other types of investigations are difficult to identify because of
the paucity of relevant taxonomic keys, and the absence of
readily observable species-specific morphological features that
can be used to tell them apart. Using aqueous ethanol insect
storage suspensions of the type generated in the field by
entomologists, an approach to species identification of
multispecies samples that utilizes DART-HRMS measurements
followed by application of a machine learning approach was
developed to determine the species composition of mixtures of
larvae. A conformal prediction protocol (aggregated hierarch-
ical conformal predictor), with an underlying top-down
hierarchical classification tree, was used for the first time for
multispecies discrimination. Evaluation of the merits of the
conformal predictor performance indicated confidence levels
between 80 and 99% in prediction of test samples. The
confidence level was observed to be lower for five- and six-
species component mixtures. Further evaluation of the
conformal predictor using y-permuted data yielded results
that validated the suitability of DART-HRMS data for
multispecies discrimination of blow flies at the larval life
stage when they manifest as mixtures.
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Four additional figures, one scheme, and five tables
referenced in the text: Aggregation of blow fly larvae on
a pig carcass; representative DART-HRMS spectra
representing various species of larvae; the merits plots
of the aggregated hierarchical conformal predictor in
analysis of the actual and y-permuted data for class
assignment in the hypothesized significance level
threshold range of 0−0.2; the algorithm of the
aggregated hierarchical conformal predictor; makeup of
the 70% aqueous ethanol suspensions representing
mixture types; information on the input data and
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predictions, not assigned predictions, and false positive
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