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ABSTRACT: The United Nations Office on Drugs and Crime has
designated several “legal highs” as “plants of concern” because of the dangers
associated with their increasing recreational abuse. Routine identification of
these products is hampered by the difficulty in distinguishing them from
innocuous plant materials such as foods, herbs, and spices. It is demonstrated
here that several of these products have unique but consistent headspace
chemical profiles and that multivariate statistical analysis processing of their
chemical signatures can be used to accurately identify the species of plants
from which the materials are derived. For this study, the headspace volatiles of
several species were analyzed by direct analysis in real-time high-resolution
mass spectrometry (DART-HRMS). These species include Althaea officinalis,
Calea zacatechichi, Cannabis indica, Cannabis sativa, Echinopsis pachanoi, Lactuca virosa, Leonotis leonurus, Mimosa hositlis,
Mitragyna speciosa, Ocimum basilicum, Origanum vulgare, Piper methysticum, Salvia divinorum, Turnera diffusa, and Voacanga
africana. The results of the DART-HRMS analysis revealed intraspecies similarities and interspecies differences. Exploratory
statistical analysis of the data using principal component analysis and global t-distributed stochastic neighbor embedding
showed clustering of like species and separation of different species. This led to the use of supervised random forest (RF), which
resulted in a model with 99% accuracy. A conformal predictor based on the RF classifier was created and proved to be valid for a
significance level of 8% with an efficiency of 0.1, an observed fuzziness of 0, and an error rate of 0. The variables used for the
statistical analysis processing were ranked in terms of the ability to enable clustering and discrimination between species using
principal component analysis−variable importance of projection scores and RF variable importance indices. The variables that
ranked the highest were then identified as m/z values consistent with molecules previously identified in plant material. This
technique therefore shows proof-of-concept for the creation of a database for the detection and identification of plant-based
legal highs through headspace analysis.

■ INTRODUCTION
While significant attention has been given in recent years to the
surge of the opioid epidemic, the dramatic increase in the
abuse of unregulated psychoactive plants remains troublesome.
The rising concern is such that the United Nations Office on
Drugs and Crime (UNODC) has designated 20 species as
plants of concern.1 These plants are perceived by users to be a
more safe and natural alternative to achieving altered states of
consciousness than synthetic drugs. Products derived from
these materials are readily available through Internet
commerce and are difficult to regulate in large part because
of the challenge of distinguishing them from innocuous plant
materials such as food, spices, and medicinal herbs. Examples
of such species include Salvia divinorum and Turnera diffusa,
both endemic to Central and South America, and Mitragyna
speciosa, native to Southeast Asia.
These drugs are bulk-shipped into the United States in large

containers and are often purposefully mislabeled. Because of
the difficulty in identifying them, it is impossible for border
protection agents to assess the veracity of the species identity

listed on the product labels. In principle, a technique that could
be exploited for the identification of these materials is
headspace analysis. This approach would be successful if the
plant materials exhibit headspace volatiles profiles that are
consistent for a given plant material but distinct from the
headspace of others. The number of studies that have explored
this hypothesis is limited. A few reports have shown that a
handful of psychoactive materials can be detected and
identified through the use of headspace analysis, including
cocaine and 3,4-methylenedioxymethamphetamine.2−4 Addi-
tional studies have shown that cannabis can also be detected
and identified through the use of headspace analysis by
targeting specific compounds.2,5−7 This technique has also
been applied to innocuous plant materials including basil and
oregano,8−10 but the exploration of this approach for the
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identification of psychoactive plant-based legal highs has not
been reported.
Should it be demonstrated that plant materials exhibit

fingerprint profiles that are diagnostic for a given species, it
should be possible to create a database of these against which
the headspace of unknown materials can be screened to make
an identification. The feasibility of creating such a database
hinges on being able to generate hundreds of replicates of the
requisite data and the development of an appropriate statistical
analysis approach for classification. In this regard, the
utilization of ambient ionization mass spectral techniques
such as direct analysis in real-time high-resolution mass
spectrometry (DART-HRMS), shows significant promise in
promoting the rapid analysis of samples to generate the data
required to create a robust database. For example, previous
research shows that DART-HRMS can be used for the
identification of different forensically relevant samples
including entomological specimens and condom residue
evidence, based on the ability to rapidly generate large
replicate datasets.11,12 DART-MS analysis facilitated by the

concentration of analytes on solid supports (e.g., sorbents) has
previously been reported.13 Furthermore, the blending of these
techniques with headspace collection specifically has been used
to detect reaction intermediates induced by plant defense
mechanisms in Mimosa pudica roots,14 as well as for the study
of the volatile profiles of beers.15

Herein, we describe a proof-of-concept for the identification
of plant-based legal highs through the use of sorbent-facilitated
DART-HRMS analysis and multivariate statistical analysis
processing of the generated data.

■ RESULTS AND DISCUSSION
The overall approach that was devised to accomplish the
identification of plant-based materials from headspace analysis
is presented in Scheme 1. To assess whether the headspace of
psychoactive legal highs exhibits consistent and diagnostic
chemical signatures, the headspace volatiles of 11 plant-based
legal highs identified by the UNODC as plants of concern, as
well as two nonpsychoactive controls (Ocimum basilicum and
Origanum vulgare), were sampled using solid-phase micro-

Scheme 1. Steps in the Workflow for the Species Identification of Psychoactive Plants Based on Chemometric Processing of
DART-HRMS Data Acquired from Headspace Analysis

Figure 1. Representative DART mass spectra for the headspace (left panel) and plant material (right panel) analysis of Calea zacatechichi.
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extraction (SPME) fibers, which were subsequently analyzed
by DART-HRMS in positive-ion mode. Bulk materials derived
from plant parts that have historically been used for their
psychoactive effects were analyzed (i.e., Mimosa hostilis
(ground leaves), Voacanga africana (ground root bark), T.
diffusa (ground leaves), Piper methysticum (ground leaves),
etc.). The headspace of each sample was concentrated on
poly(dimethylsiloxane) (PDMS) SPME fibers for 30 min, and
this was followed by the analysis of the adsorbed compounds
by DART-HRMS (Scheme 1, step 1). Also performed were
direct DART-HRMS analyses of the bulk plant material, the
results of which served to enable comparison with the
headspace results. A representative example of the mass
spectra generated from these DART-HRMS experiments is
shown in Figure 1, while the DART-HRMS spectra of the
headspace and plant-based legal high material are presented in
Figure S1. The spectra of the headspace of cannabis species are
presented in Figure S2.
In Figures 1 and S1, the left panels show the spectra of the

headspace profiles, while those on the right are of the spectra
obtained from direct analysis of the bulk material. The results
of these analyses revealed two trends. First, multiple replicates
of the material of the same species, even when acquired from
different sources, exhibited similar headspace small-molecule
profiles, and this was also true for the direct analysis of the bulk
plant material. For example, the headspace spectra of Calea
zacatechichi (Figure 1) all contained the m/z values (± 0.005)
of 120.0970, 170.1527, and 219.1011, and the bulk material
spectra all contained the m/z values (± 0.005) of 137.1318,
203.1768, and 219.1011. Not only did each of the respective
spectra have similar m/z values, but they also had similar mass
spectral patterns that were unique to that species. The trends
seen for C. zacatechichi were also observed for the other species
analyzed in this study (Figures S1 and S2). This indicated that
the replicates representing different samples of the same
species showed diagnostic intraspecies similarities and differ-
entiating interspecies distinctions. Second, while there was
some duplication of compounds between the plant material
and the headspace constituents, the spectra of the two were
markedly different. For example, both the mass spectra of the
headspace and plant material of C. zacatechichi (Figure 1)
contain the high-resolution m/z value 219.1011 (± 0.005),
which has been identified as representing protonated euparone
[(C12H10O4) + H+] based on its fragmentation pattern.16

Similar findings were observed with the other plant species

analyzed (Figure S1). This observation was anticipated, since
by and large, the headspace signatures would be composed of
the subset of compounds contained within the plant materials
that are volatilized under ambient conditions. Interestingly, it
was also observed that the headspace profiles of two different
strains of cannabis could be distinguished visually (Figure S2).
This aligns with the previously reported observations.5,7

In the spectra of each species (both plant material and
headspace), several of the observed high-resolution masses
could be correlated to formulas that were consistent with
compounds well known to be present in the plant. For
example, m/z 137.1330 (± 0.005) is consistent with terpene
compounds known to be present in T. diffusa,17 S. divinorum,18

and other plant species.19 The m/z value 149.0966 (± 0.005)
found in O. basilicum corresponds to C10H13O, which is
consistent with the presence of protonated estragole, which has
previously been shown to be present in the plant material.20

The observations of consistent intraspecies similarities and
interspecies differences set the stage for the successful
development of a database and a corresponding statistical
analysis model that could serve as a screening device against
which the chemical fingerprints of unknowns could be
compared for species identification purposes. To study the
possibility of utilizing plant material headspace for differ-
entiation between species, a mass data matrix that aligned
plant-derived DART-HRMS spectra according to common m/
z values was created and subjected to statistical analysis
processing methods. Thus, as indicated in Scheme 1 (step 1),
the mass spectral data from 15 species (in replicates of 10 each,
resulting in a total of 150 spectra) were first binned and
normalized, yielding a 150 × 355 data matrix (355 represents
the total number of m/z values). Then, as indicated in Scheme
1 step 2, principal component analysis (PCA) and global t-
distributed stochastic neighbor embedding (g-SNE), as
unsupervised methods, were applied to explore and visualize
the structure inherent in the data and to reveal clustering of
species within a lower-dimensional space. With PCA, the data
were resolved to scores and loadings. Figure 2 illustrates the
three-dimensional (3-D) score plot (along principal compo-
nents (PCs) 1−3). These three PCs explained ∼46% of the
variance of the data. Each point in the plot corresponds to a
sample, and the distances between points reveal the relative
level of similarity and dissimilarity between samples. For ease
of visualization, each species is represented by a color. From
the plot, a clear separation of the species O. basilicum, O.

Figure 2. 3-D scores plot featuring principal components (PCs) 1−3 derived from principal component analysis (PCA) of DART-HRMS data
generated by analysis of the headspace of each of the indicated species. The score plot displays clear separation for species O. basilicum, O. vulgare,
L. leonurus, C. sativa, C. indica, T. diffusa, P. methysticum, and A. officinalis. The inset, which is enclosed in the smaller rectangle, is expanded for ease
of visualization to further illustrate the relationships between the clustered species M. hostilis, M. speciosa, S. divinorum, L. virosa, V. africana, C.
zacatechichi, and E. pachanoi. The percentage variance accounted for by each of the indicated PCs is shown in parentheses.
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vulgare, Leonotis leonurus, Cannabis sativa, Cannabis indica, T.
diffusa, P. methysticum, and Althaea officinalis is readily
apparent. The rectangular panel embedded within the plot is
a magnification of the upper-left quadrant and shows that the
species M. hostilis, M. speciosa, S. divinorum, Lactuca virosa, V.
africana, C. zacatechichi, and Echinopsis pachanoi are clustered
together.
The plot displayed in Figure 3 shows the results of the

application of the g-SNE technique in two dimensions. Similar

to a PCA score plot, the points define the positions of
observations based on the relative g-SNE similarities, and each
species is defined by a color. The plot illustrates the clustering
of the samples of each species and shows a clear separation
between them that corresponds closely to the true labels. Of
note is the fact that the local similarity relations between
species are comparable with the PCA results. However, one
sample belonging to the C. indica class was observed to be an
extreme outlier and was thus removed prior to further analysis.
The results of these exploratory analyses unmasked the

hidden discrimination structure between species. Subsequent
application of the supervised random forest (RF) technique
(using the “RandomForest” package in R) (Scheme 1, step 2,
center panel) was performed on the 149 × 355 data matrix to
define the discrimination model for the classification of plant
species using DART-HRMS data and class labels. The RF
method hyperparameters, the minimum number of nodes and
the number of variables (m/z) randomly sampled as
candidates at each split, were optimized based on a random
search of their values within a range. The minimum number of
nodes was explored within the range of 1−5, and the number
of sampled variables was set to between 20 and 350 variables.
Cross-validation (10-fold) of the created RF classifiers was
repeated 100 times to find the optimum parameter values that
enabled the building of an accurate model. The optimum
values were observed to coincide with 1 node for the minimum
number of nodes and 55 randomly sampled variables for each
split. The RF technique set with these optimized parameters
was then performed with different numbers of trees, and in this
case, a forest with 1000 trees was found to provide a model
with an improved error rate in prediction. The RF algorithm
categorizes approximately a third of the dataset as “out-of-the-
bag” (OOB) samples (for validation purposes) and performs
training with the remaining two-thirds. Thus, the votes for the

OOB samples are aggregates of only those decision trees that
were not included in the training set. The OOB samples were
used to calculate error rates and variable importance values.
Figure S3 illustrates the estimated error rate for the OOB
classifier on the training set for the grown trees in the RF
model. The error converged to a plateau at a value of 0.007
after growing around 382 trees. Table S1 shows the
performance results of the discrimination model for each
species (i.e., classification precision, sensitivity, and specificity),
and it displayed an accuracy of 99% for the OOB sample
predictions. The sensitivity and specificity illustrate the true
positive and true negative rates for species identification,
respectively. The results show that a single sample of C. indica
was incorrectly predicted to be E. pachanoi but that all other
observations were identified correctly. This indicates that
DART-HRMS analysis of plant-derived headspace in combi-
nation with the RF model is a satisfactory approach for
identifying plant species.
One of the important properties of RF is the added

possibility of computing a “proximity matrix” as a descriptive
measure. The proximity matrix quantifies the similarity
between samples and is calculated in those instances when
two samples are placed in the same terminal node. The results
of the application of multidimensional scaling to this distance
matrix (1-proximity) to obtain the two principal coordinate
components are shown in Figure S4 (with each species
assigned a color). Like points were observed to cluster
correctly, but the plot also revealed the close similarities
between O. vulgare, O. basilicum, L. leonurus, T. diffusa, and P.
methysticum on the one hand and between E. pachanoi, V.
africana, L. virosa, A. officinalis, and M. hostilis on the other. In
comparing these results with those obtained by PCA and g-
SNE, it was deduced that the three methods provide
complementary information in presenting the similarities
between species, as is described below.
To determine the accuracy of the method for predicting the

identity of unknowns, 14 samples were analyzed blindly by
DART-HRMS. Their mass spectrometric data were then
aligned and binned with the training samples. A conformal
predictor based on the RF classifier was created to determine
the prediction with an assigned confidence level for each test
sample. All training samples were considered as members of
the bag of calibration samples, and an off-line experiment using
the leave-one-out (LOO) approach was applied. The
conformity measure and p-values (from eq 1, see Experimental
Section) were then calculated for LOO sample prediction. Of
the 149 LOO samples, 15 were assigned to multiple classes (at
the ε = 8% significance level), but all of the other samples were
assigned a single label, which was correct in each case. Thus,
the designed conformal predictor proved to be valid for a
significance level of 8% with an efficiency of 0.1, an observed
fuzziness of 0, and an error rate of 0. The efficiency is the
number of multiple predictions over all tested samples, and the
observed fuzziness is defined as the sum of all p-values for the
incorrect class labels. A predictor makes an error when the
predicted region does not contain the true label, and the error
rate refers to the number of observations predicted incorrectly.
Table 1 presents the performance outcomes for the

prediction of the identities of these unknowns, as well as the
prediction credibility and confidence level using the RF model.
The results show that the true class labels fall within the
correct prediction region (with a significance level of 8%) for
all unknown samples. The confidence level for the unknown

Figure 3. Clustering results observed from the application of global t-
distributed stochastic neighbor embedding (g-SNE) to DART-HRMS
data generated from plant headspace analysis. This 2-D rendering
shows points that appear in clusters that are color-coded to species.
The clustering is based on the relative similarities of the data points
that correspond closely to the true labels and illustrates a clear
separation of species.
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samples representing M. hostilis, O. vulgare, E. pachanoi, and C.
sativa samples indicates that the p-value for some other
class(es) should be 0.09. The calculated p-value for each
species is displayed for each sample in Table S2. The table
illustrates that the four aforementioned samples can each be
classified as members of two species.
Aiming to rank the variables in terms of their ability to

facilitate clustering and discrimination between species, the
importance of the variables was quantified using principal
component analysis−variable importance of projection (PCA−
VIP) scores and RF variable importance indices (Scheme 1,
step 2, last panel). The importance of the primary variables
identified by PCA as contributing to the maximum variance are
defined in eq 3 (see Experimental Section). The average

relative importance of the variables (m/z values) in the
bootstrap analysis PCA−VIP for the three principal
components (which accounted for ∼46% of the variance of
the data) is illustrated in Figure 4a, in which the 30 most
important m/z values with PCA−VIPs are labeled. These
include monoterpenoids (β-myrcene, camphene, β-pinene, β-
phellandrene, γ-terpinene, and α-pinene at m/z 137.1096 in O.
basilicum, C. zacatechichi, C. zacatechichi, T. diffusa, T. diffusa,
and L. leonurus, respectively), sesquiterpenoids (α-curcumene
at m/z 203.1789 in C. zacatechichi and T. diffusa; trans-α-
bergamotene, caryophyllene, and β-sesquiphellandrene at m/z
205.1889 in O. basilicum, T. diffusa, and T. diffusa,
respectively), and estragole (at m/z 149.0895 in O. basilicum).
In addition, the permutation-based importance of predictive
variables in the 10 repeats of the RF modeling was applied to
show which m/z values were useful for discrimination between
plant species. All variables (m/z values) were considered for all
of the trees in all 10 RF classifiers. Each variable’s importance
is the average of the importance values derived from the
classifiers. The bar plot in Figure 4b displays the rankings for
the 30 most important variables computed by this method.
In comparison to the PCA−VIP results, it is noteworthy that

40% of the m/z values detected by PCA−VIP aligned with
those that emerged by RF modeling. For visualization of this
correspondence, Figure 5 illustrates the 3-D loading plot
created using the first three PCs, along with the marked
loadings for the important m/z values detected by PCA and RF
analyses. The solid navy points in the figure show the loadings
for 355 variables, while the magenta stars and red circles are
markers for m/z values and loadings that were derived from
PCA and RF, respectively. This rendering makes apparent that
both methods furnish similar results and that about 40% of the
m/z values that emerged in RF analysis as important were also
essential in explaining the maximum variance of the data. Table

Table 1. Prediction Results for the Indicated 14 Test
Samples Representing Each Speciesa

species prediction credibilityb confidence levelc

A. officinalis true 0.09 1
C. indica true 0.27 1
C. sativa true 0.09 0.91
C. zacatechichi true 0.9 1
E. pachanoi true 0.09 0.91
L. leonurus true 0.09 1
L. virosa true 1 1
M. hostilis true 0.09 0.91
M. speciosa true 0.45 1
O. basilicum true 0.09 1
O. vulgare true 0.18 0.91
P. methysticum true 0.45 1
S. divinorum true 0.36 1
T. diffusa true 0.55 1

aThe credibility and confidence levels are reported for each.
bCredibility corresponds to the highest computed p-value. cConfi-
dence level refers to 1 minus the second-highest p-value.

Figure 4. Values (30 m/z) observed to be most important for enabling clustering and species discrimination, calculated using PCA and RF
modeling of DART-HRMS-derived data from the analysis of plant headspace. (a) Variables (m/z values) of importance in discrimination, revealed
through bootstrap PCA−VIP analysis based on the three principal components, which explained ∼46% of the variance of the data, and their
corresponding average scores. (b) The m/z values important for discrimination were extracted using permutation-based importance of predictive
variables in RF. In both panels, the m/z values are listed in the order of decreasing PCA−VIP scores and variable importance RF values.
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S3a−f reports the average relative intensities for m/z values
that were ranked by both methods to be important.
From the point of view of the local variable importance for

clustering of species based on PCA score and loading plots
(Figures 2 and 5, respectively), m/z values 152.1294,
104.0698, 180.1592, and 85.0299 were important in the
clustering of M. hostilis, M. speciosa, S. divinorum, L. virosa, V.
africana, C. zacatechichi, and E. pachanoi. The m/z values
81.0500, 137.1096, 99.0399, 93.0699, 173.0992, and 175.1191
were important for the detection of the similarities between L.
leonurus, C. sativa, C. indica, T. diffusa, P. methysticum, and A.
officinalis, respectively.
Table S4a−c lists information on the characteristics of the

important variables and shows the 20 most important
discriminating features for each species that were revealed by
the RF approach and which represent the mean of the
importance of each variable in the samples belonging to each
species. These m/z values illustrate the features that were
significant for enabling the discrimination of a specific species
from all other species. However, it should be noted that these
variables do not necessarily match with those indicated in
Figure 4 and Table S3 that enabled the creation of the
classification model. This is because there were two types of
investigations accomplished using the RF results. One was
differentiation of a given species from the 14 others that were
the subject of the investigation. The m/z values that enabled
the accomplishment of this were described as being of “local”
importance and are listed in Table S4. The second enabled
discrimination between all species simultaneously such that the
discrimination between species could be readily visualized
through the clustering observed in Figure S4 (two-dimensional
(2-D) plot of the proximity matrix analysis). The m/z values
associated with this type of classification are described here as
“global” and appear in Figure 4. As the two types of exploration
accomplish different tasks, the variables that are most heavily

weighted in achieving the two types of classification are not
necessarily the same.
The results of this study reveal that the headspace volatiles

of the legal high plant materials analyzed in this study exhibit
consistent and unique chemical profiles, the constituents of
which can be concentrated using solid-phase microextraction
fibers. The results are highly accurate despite the SPME-
facilitated volatiles collection having been performed at
ambient (as opposed to elevated) temperature and the data
variability inherent in the manual DART-MS analysis process.
The mass spectra observed were remarkably consistent for
samples of the same class. Their chemical signatures, rapidly
acquired by DART-HRMS analysis, can then be subjected to
multivariate statistical analysis using a conformal predictor
based on a random forest model, to predict the species
identifies of plant material unknowns at a significance level of
8%, an efficiency of 0.1, an observed fuzziness of 0, and an
error rate of 0. This is important, in that it shows proof-of-
concept for the creation of a headspace chemical profile
database, which can be used to rapidly screen headspace mass
spectra of unknowns, to identify plant-based legal highs.

■ EXPERIMENTAL SECTION
Plant Material. Dried samples of A. officinalis leaves, C.

zacatechichi leaves, L. virosa leaves, L. leonurus flowering
material, and V. africana root bark were purchased from World
Seed Supply (Mastic Beach, NY). Dried M. hostilis root bark
was purchased from Mr. Botanicals (MrBotanicals.com). Dried
P. methysticum root powder and T. diffusa leaves were
purchased from Bouncing Bear Botanicals (Lawrence, KS).
Dried M. speciosa leaves were purchased from Kratom King
(Reno, NV). Dried O. basilicum leaves and O. vulgare leaves
were purchased from Hannaford Bros. Co. (Scarborough,
ME). A fresh E. pachanoi plant was purchased from World
Seed Supply (Mastic Beach, NY) and then cut and dried. A
fresh S. divinorum plant was purchased from Undergroun-
droots.net (La Conner, WA) and then cut and dried. Cannabis
samples (i.e., C. sativa and C. indica) were analyzed at the U.S.
Fish and Wildlife Forensics Laboratory (Ashland, OR).

Solid-Phase Microextraction Fibers. Divinylbenzene/
carboxen/poly(dimethylsiloxane)-coated 24 ga 50/30 μm
solid-phase microextraction fibers and solid-phase micro-
extraction fiber holders for use with manual sampling were
purchased from Supelco Inc. (Bellefonte, PA). Fibers were
conditioned for 30 min at 250 °C under a stream of helium gas
before each headspace sampling.

Headspace Sampling. Roughly 10 g of each plant species
was placed in separate 25 mL Erlenmeyer flasks. The mouth of
the flask was covered with aluminum foil. A conditioned solid-
phase microextraction fiber was then exposed to the headspace
of the sample for 30 min at room temperature (Figure 6). This
concentration step was performed under ambient conditions
(rather than at elevated temperature) to detect volatile
components that are more likely to be observed under the
ambient conditions present in the vessels containing the
samples or within the general vicinity of the samples (in the
field). Each of the plant samples was analyzed in replicates of
10. Spectra of C. sativa and C. indica headspace were acquired
by transferring the samples to a 20 mL scintillation vial and
placing it uncapped between the ion source and the mass
spectrometer inlet.

DART-HRMS Analysis. Exposed SPME fibers were
analyzed using a direct analysis in real-time (DART)-SVP

Figure 5. Equivalent semantic relationships between PCA−VIP and
RF variable importance methods from within the set of important
predictors (m/z values), rendered as a 3-D loading plot. The navy
points display the loadings of 355 m/z values. The loadings of the m/
z values representing the top-ranking variables obtained from the RF
and PCA−VIP analyses are indicated with red circles and magenta
stars, respectively. The observed overlap of circles and stars illustrates
alignment in the predictions of the two methods regarding the m/z
variables that were the most important contributors to the ability to
differentiate between species.
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ion source (IonSense, Saugus, MA) interfaced with a JEOL
AccuTOF mass spectrometer (JEOL USA, Peabody, MA).
Each fiber, while extended from the holder assembly, was
manually “waved” back and forth in the DART gas stream until
there was no longer an MS signal that was registered (which
signified that the content of the fiber had been fully desorbed
and which took ∼1 min) (Figure 7). The fibers were analyzed

in positive-ion mode with the gas heater temperature in the
DART software set to 250 °C, over a mass range of m/z 40−
800. The DART ion source helium flow rate was 2.0 L/min.
The mass spectrometer settings were as follows: the orifice 1
voltage was 20 V, the orifice 2 voltage was 5 V to minimize
fragmentation, and the peak voltage was 400 V to allow for the
detection of ions over m/z 40. The mass spectrometer has a
resolving power of 6000 full width at half maximum.
Poly(ethylene glycol) (PEG 600) was used to calibrate the
mass spectra following the analysis of each individual fiber.
Plant material for each species was also analyzed directly using
the same DART parameters as the SPME fibers for
comparison.
Spectral Analysis. Calibration, background subtraction,

and peak centroiding were conducted using TSSPro3 software

(Schrader Analytical Laboratories, Detroit, MI). Mass spectral
analysis was performed using Mass Mountaineer (Mass-spec-
software.com, RBC Software, Portsmouth, NH). The DART
mass spectrum of a conditioned SPME fiber that was not
exposed to the headspace of any samples was used as a blank
for the SPME samples.

Statistical Analysis. To model discrimination between
plant species and to discover which features (m/z values) are
most important for distinguishing between them, multivariate
statistical analysis methods were applied to the DART-HRMS
data acquired from the analysis of plant samples. The workflow
outlined in Scheme 1 illustrates the approach.
In step 1, SPME fiber-facilitated DART-HRMS was used to

generate a mass spectrum for each sample, with the analysis
performed using multiple species and 10 replicates. In all, the
mass spectra of 150 samples representing 15 different species
were imported into MATLAB 9.3.0, R2017b Software (The
MathWorks, Inc., Natick, MA), in text format (composed of
m/z values and their corresponding intensities) for further
analysis in MATLAB and R 3.5.1 (http://cran.r-project.org/).
A data matrix with the dimensions 150 × 355 was created from
binning of mass spectra, with the optimal bin width and the
relative abundance threshold being ±10 mmu and 0.2%,
respectively. In step 2, the data matrix was subjected to
descriptive and predictive methods to reveal information on
species in terms of discriminative markers. This step consisted
of three parts: exploration, classification, and determination of
variable (m/z) importance, detailed below.

Exploration. An extended form of t-distributed stochastic
neighbor embedding, termed “g-SNE”, was used to visualize
the data structure in a 2-D scatter plot. This neighbor-
embedding technique preserves the pairwise similarities of
probable neighbors by minimizing the divergence of similarity
distributions between neighboring data points and embedding
the points in a lower-dimensional space. The dataset was
subjected to principal component analysis (PCA) to explore its
similarity structure and to reveal the m/z values which were
the primary indicators of similarities and dissimilarities
between like and unlike groups, respectively.

Classification. The random forest (RF) technique
proposed by Breiman was investigated as a plant species
discrimination model.21 Random forest is a classifier which
aggregates a large number of “trees” to reduce overfitting and
preserve reliable predictions. Every tree in the forest is “grown”
on an independently drawn bootstrap replica of the data matrix
and assigned a vote for each class (i.e., the estimated
probability of the observation originating from the given
class) at each input sample. The samples not included in the
replica for a given tree are considered to be “out-of-bag”
(OOB) for that tree. The overall accuracy and the performance
characteristics of the model are computed based on the
predictions of OOB observations. For the prediction of new
samples, a conformity measure was used to yield a confidence
level prediction based on a random forest classifier.22

Conformal prediction provides the opportunity to have output
region predictions (i.e., a set of predicted labels) with a
guaranteed error rate based on the calculated p-value. The
conformity score for a given observation i in the bag (i.e., the
calibration set in the conformal prediction context) for a
specific class k (designated as αi

k) is the proportion of votes of
all of the trees for a given class k. The result is a matrix of
conformity scores with one row per observation and one
column per class.

Figure 6. Headspace volatile collection using an SPME fiber.

Figure 7. SPME fiber introduction to the DART gas stream.
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The parameters m and nc indicate the number of samples in
the bag and classes, respectively. The resulting scores were
then used to calculate the p-value for the labeling of an
unknown sample representing a given species, according to eq
1. To calculate the p-value for observation “m + 1” for a
specific class k (represented as p(αm+1

k )), the conformity score
of the observation for class k (αm+1

k ) was computed and
compared with the observations’ in-bag scores for class k with
the following conditions: the scores of observations belong to
class k (αi

k, i ∈ 1,...,m|yi = k), and the maximum conformity
measure of the observations does not belong to class k (max
(αi

k), i ∈ 1,...,m|yi ≠ k). In the case of single-label predictions,
the confidence of the prediction is one minus the second-
largest p-value, and the credibility is the largest p-value.
Variable Importance. PCA and RF results were explored

to deduce the relative importance of the various m/z values in
enabling the clustering of and discrimination between plant
species. This was accomplished by generating variable
importance of projection (VIP) scores, as proposed by
Ginsburg et al.23 VIPs enable the consideration of the
structure of the reduced dimensional PCA space and the
class labels according to eqs 2 and 3, where T, P, y, and b (in
eq 2) are the scores, loadings, class labels, and regression
coefficients between class labels and scores, respectively.
Equation 2 represents the decomposition of the mass data
matrix into scores (T) and loadings (P) matrices, and
regression between scores (T) and class labels (y). Equation
3 displays the computation equation for VIP scores. The terms
npc, m, and nv define the number of principal components,
samples, and m/z values, respectively.
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PCA−VIP scores were calculated by randomized boot-
strapping (1000 repetitions), with 80% of the samples used
to create a PCA model in each repeat. Determination of the m/
z values that were most important in enabling discrimination
between sample types was accomplished by defining an
importance measure (permutation-based variable importance)
that was embedded in the OOB observations in the RF model.
The score of a given variable was computed as the average
decrease in model accuracy of the OOB samples when the
values of the corresponding variable were randomly permuted
across the OOB observations. Therefore, for each variable in
every tree grown, the difference in the percentage of two votes
for the correct class of the OOB observations was measured: a
vote for the untouched OOB data and another vote for the
variable permuted OOB data. The average of this measure for
all of the trees in the ensemble represented the importance
score for each variable (i.e., m/z value).24
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(8) Díaz-Maroto, M. C.; Peŕez-Coello, M. S.; Cabezudo, M. D.
Headspace solid-phase microextraction analysis of volatile compo-
nents of spices. Chromatographia 2002, 55, 723−728.
(9) Gao, B.; Qin, F.; Ding, T.; Chen, Y.; Lu, W.; Yu, L. L.
Differentiating organically and conventionally grown oregano using
ultraperformance liquid chromatography mass spectrometry (UPLC-
MS), headspace gas chromatography with flame ionization detection
(headspace-GC-FID), and flow injection mass spectrum (FIMS)
fingerprints combined with multivariate data analysis. J. Agric. Food
Chem. 2014, 62, 8075−8084.
(10) Asadollahi-Baboli, M.; Aghakhani, A. Headspace adsorptive
microextraction analysis of oregano fragrance using polyaniline-nylon-
6 nanocomposite, GC-MS, and multivariate curve resolution. Int. J.
Food Prop. 2015, 18, 1613−1623.
(11) Beyramysoltan, S.; Giffen, J. E.; Rosati, J. Y.; Musah, R. A.
Direct analysis in real time-mass spectrometry and kohonen artificial
neural networks for species identification of larva, pupa and adult life
stages of carrion insects. Anal. Chem. 2018, 90, 9206−9217.
(12) Coon, A. M.; Beyramysoltan, S.; Musah, R. A. A chemometric
strategy for forensic analysis of condom residues: Identification and
marker profiling of condom brands from direct analysis in real time-
high resolution mass spectrometric chemical signatures. Talanta 2019,
194, 563−575.
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