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ABSTRACT: A new method termed efficient data reduction-
multivariate curve resolution (EDR-MCR) has been devised for
classification of high-dimensional data. The method introduces the
coupling of EDR and MCR as a new strategy for data splitting,
variable selection, and supervised classification of high dimension-
ality data. The method reduces data dimensionality and selects the
training set using principal component analysis (PCA) and convex
geometry prior to data classification. Then, the reduced data are
categorized using an MCR model, in which numerical constraints
are imposed to resolve the data into classes and readily
interpretable pure component signal weights. The performance
of the EDR and supervised MCR methods were tested for their ability to enable discrimination between the constituents of two
benchmark and two high-dimensional data sets. The results were compared with the output of the application of different data
splitting methods including iterative random selection (IRS), Kennard−Stone (KS), and discrimination methods including partial
least-squares-discriminant analysis (PLS-DA) and the ensemble-learning frameworks of linear discriminant analysis (LDA), k-nearest
neighbors (KNN), classification and regression trees (CART), and support vector machine (SVM). Overall, EDR resulted in
comparable results with other data splitting methods despite the small size of the training set samples that it created. The proposed
MCR approach, in comparison with other commonly used supervised techniques, has the advantages of speed in implementation,
tuning of fewer parameters, flexibility in the analysis of data characterized by low sample numbers and class imbalances, improved
accuracy from the inclusion of additional system information in the form of numerical constraints, and the ability to resolve pure
components signal weights.

■ INTRODUCTION
A prevailing challenge in the ability to accurately classify and/
or draw inferences from chemical data that enable prediction
of trends and outcomes remains the determination of the most
straightforward and accurate approach to accomplish the task.1

A hallmark of this well-established field is the immensity of the
range of algorithms that have been developed for this purpose.
This reflects the truth of Wolpert’s “no free lunch theorem”,2

in that there is no single approach that can be used to solve a
broad range of classification problems.
In general, the development process for the establishment of

a multivariate data analysis workflow that will accomplish
classification and/or prediction for a given type of data is
composed of two fundamental components: (1) data reduction
methods (such as variable selection3−5) in which decisions are
made about the subset of the full data set that is most
important for revealing class distinctions and (2) splitting
approaches which involve dividing the data into training and
test sets and which can introduce biases into the model that
influence the final result.6 The process of determining the most
appropriate data reduction and least biased splitting methods is
critical and hinges on conclusions that are drawn from the
results of supervised learning.3−5,7,8 There is a copious body of

literature that is solely devoted to the development of variable
selection methods,3−5 and numerous techniques have been
developed for assessment of model accuracy. Some of the most
widely used sampling approaches are Kennard−Stone, random
selection, and stratified sampling.7−14 The choice of the
representative sampling method hinges on data set characters
and on the user-defined proportion of samples (with different
properties) within each split.14

Here, PCA along with the convex geometry principle were
adapted as a potential methodology for data reduction and
data splitting in an approach termed efficient data reduction
(EDR). According to convex hull intersection theory, there are
some points (i.e., vertices of the convex hull) within the
bilinear data set that are representative of all data. The system’s
information is stored within these points, and all the other
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points (inside the convex hull) can be considered to be linear
combinations of these critical points.15−20 Therefore, the
critical points that define the vertices can in principle serve as
the means by which to accomplish data reduction, extraction of
information about the variables of greatest importance in
facilitating learning, and determination of the training/test data
split. EDR can be used for data splitting, variable selection, or
both. The training and test matrices that result from the
application of this approach can then serve as the input for
machine learning methods to create supervised models. In this
work, MCR methods, which already enjoy broad use in various
fields,21−27 were applied for supervised learning. MCR is a
bilinear decomposition approach that supports inclusion of
additional system information within the form of numerical
constraints.28−35 MCR is based on classical least-squares
(CLS) models which are frequently used for target detection
(when the target spectra are known) and for targeted anomaly
detection with hyperspectral imaging data as well as with data
of other types.36−38 In order to develop an MCR algorithm for
supervised learning, the class labels of the samples can be
included as additional information in the form of soft or hard
equality constraints within the MCR platform.
We have coined the term “efficient data reduction-

multivariate curve resolution” (EDR-MCR) to refer to the
combination of EDR with MCR methods. To illustrate the
utility of EDR and MCR in supervised learning, we show here
the results of its application to four different types of data and
compare and contrast them with the outcomes of previously
reported data splitting and machine learning processing
approaches. Two are publicly available benchmark data sets
(composed of the physical characteristics of iris plants and the
chemical composition of wines). The third is direct analysis in
real time-high resolution mass spectrometry (DART-HRMS)
data derived from analysis of seeds of plants from the
nightshade plant family representing 24 species.39 The forth
is NMR data representative of human plasma from colorectal
cancer and nonmalignant cases.40

Theory of the Proposed Method. The new EDR-MCR
approach is founded on the in tandem implementation of two
main steps: (1) data reduction using EDR, which intelligently
reveals the training/test split as well as the most heavily
weighted variables and (2) discrimination with MCR, which

creates a model using a training set and predicts test samples.
The general workflow of the method is presented in Scheme 1
and is described below for a set of experiments, x1,···, xsn
(where “sn” refers to sample number) representing the
measured features of samples in the form of a row-wise data
matrix, D. D and the labels of the samples, y1, ..., ysn serve as the
input for the EDR-MCR method.

EDR. Implementation of the EDR strategy (step 1 in
Scheme 1) has two components: data splitting, variable
selection, or both. For selection of the training/test split,
EDR can be performed as indicated in Scheme 1 step 1-1, and
for selection of the discriminating variables, steps 1-1 and 1-2
should be accomplished consecutively. In Scheme 1 step 1-1, a
disjoint classes reduction method was used for selection of
training samples. Thus, samples belonging to each class (xi ϵ
class k) were disjointedly analyzed by PCA decomposition (as
defined in eq 1), and the significant number (npc) of scores
(T) were used for creating the convex space after normal-
ization. Normalization to the first eigenvector as a type of
Borgen norm41 was used. Therefore, the score vector of each
sample was multiplied by the inverse of its first score value.
With this normalization, the dimensionality of the space is
reduced by 1, and the points are bounded in a simplex whose
vertices are considered as corresponding with the samples most
important in defining the data space. Equation 2 shows the
expression used for the computation of the convex hull of the
normalized scores of class k, where nk and vn are the number
of samples belonging to class k and the number of variables,
respectively.

× = × ×

+
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The samples of class k that correspond to the vertices of the
computed convex hull (Sk) define the training set for class k.
Conversely, samples related to the interior points of the convex
hulls, which are linear combinations of the vertices of the
convex hulls, define the test set.

Scheme 1. Workflow for Classification with EDR-MCR
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In step 1-2 in Scheme 1, the matrices containing training
samples that emerged from the classes in step 1-1 were merged
to create a single matrix which was analyzed by PCA based on
eq 3 to create a shared space of classes from which the
informative variables could be extracted. This enables
consideration of the discriminative between-class information
in the selection of variables. After normalization, the loadings
(P) corresponding with the normalized scores were used for
computation of the convex hull, V, consistent with eq 4. The
vertices of the resulting convex hull reveal the variables
important for reducing the dimensionality of the data. The
reduced training and test matrices serve as the input for the
application of MCR (step 2 in Scheme 1).
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EDR is sensitive to outliers, which should be detected using
outlier detection measures. The decision on whether a point is
an outlier or a convex hull vertex depends on the accuracy of
the outlier detection measure used. In this work, Hotelling’s T-
squared and Qres were used for outlier detection. However,
simultaneous evaluation of multiple outlier measures can
simplify outlier determination and provide improved detec-
tion.42

MCR. The matrix containing the training and test data
(DEDR) was introduced to the MCR in step 2 in Scheme 1.
MCR resolves the data matrix30 to C and WT according to eq
5.

× = × ×

+

sn vi sn n n viD C

E

( ) ( )W ( )

(residual)
mcr mcrEDR

T

mcr (5)

To create a supervised learning model with the MCR
method, the class labels of the samples were included as
additional information in the form of soft or hard equality
constraints within the MCR platform. To apply the equality
constraint, one not a number “NaN” matrix composed of the
number of samples × the number of MCR components
(nmcr)

43 was defined, and the class information on the samples
was included in the corresponding coordinates in the matrix.
The labels of the training samples that were associated with
each class were vectors that were assigned a binary code of 0
and 1 which designated the assignment or nonassignment of a
sample to a class, respectively. MCR is initialized with
estimates of C or WT, and C and WT are optimized iteratively
using an alternating least-squares (ALS) algorithm until
convergence is reached and the constraints are fulfilled. The
optimized C contains the samples’ class information (i.e.,
sample similarities and differences).WT aligns with the weights
of the projected data in the class space and therefore reflects
the relative weight contributions of the variables and their
impact on the class structure. In implementing the hard
equality constraint, C coordinates that corresponded with the
training set were confined to values of 0 and 1 for assignment
or nonassignment of a sample to a class, respectively, while for
the soft equality constraint implementation, deviation from the
constrained value was allowed. As detailed systematically in the
literature,44,45 implementation of soft constraints and specifi-

cally soft equality constraints has significant advantages,
including improving prediction accuracy.
It should be noted that both training and test samples

simultaneously contribute to the building of the MCR model.
This permits inclusion of test set information in the creation of
the model. In fact, it was shown that this approach yielded
better quantitative results for MCR-ALS in comparison with
partial least-squares (PLS), when a limited number of
calibration samples were available.28

For evaluation of unknown test samples, data can be
analyzed and classified in step 2. Therefore, the samples were
reduced using detected variables (in step 1-2) and added to the
training set for MCR analysis. The EDR part of the algorithm
was written in house in MATLAB, and MCR was run using
MCR-ALS GUI 2.0.46 All calculations were performed using
MATLAB 9.3.0, R2019a software (The MathWorks, Inc.,
Natick, MA, USA). Practical notes on the application of EDR-
MCR are presented in the Supporting Information.

■ EXPERIMENTAL DATA

Four data sets, two benchmarks (https://archive.ics.uci.edu/
ml/datasets), and two high-dimensional chemical data sets
were considered in our assessment of the abilities of the
proposed method in contrast to others.

Benchmark-I: Iris Flower Data Set. The data set
represents the three species I. setosa, I. virginica, and I.
versicolor with consideration of four features, namely, sepal
length, sepal width, petal length, and petal width.

Benchmark-II. Wine Data Set. The data set contains the
chemical constituents of wines grown in the same region in
Italy but derived from three different cultivars. The 13
quantified attributes for characterization of the wines are
alcohol, maleic acid, ash, ash alkalinity, magnesium, total
phenols, flavonoids, nonflavonoid phenols, proanthocyanins,
color intensity, hue, the OD280/OD315 of diluted wines, and
proline.

Hallucinogenic Solanaceae (Nightshade) Species
Data Set. This data represents a 24-class problem composed
of DART-HRMS of the seeds of 24 plant species (detailed in
the Supporting Information, Nightshade species section).
These plants are taxonomically related and are members of
five genera in the Solanaceae family. The details of the sample
preparation, instrumentation, and DART-HRMS analyses are
as described previously.39 Figure S1 displays representative
mass spectra of the 24 species, in the mass range m/z 40−700.
The data matrix had 219 rows (i.e., number of samples) and
2976 columns (i.e., number of m/z values).

Colorectal Cancer (CRC) Data Set. The data represent
human plasma samples from a verified CRC group and a group
with other nonmalignant findings and were reported as part of
a study on patients undergoing large bowel endoscopy due to
symptoms which could be ascribed to CRC.40 These samples
were analyzed using both fluorescence and 1H NMR
spectroscopy (CPMG and NOESY-Presat). In this report, we
used the NMR data which were composed of 94 samples (47
cancer samples and 47 adenoma samples) and 455 peaks. The
first 201 peaks were from CPMG, and the remaining 254 were
from the NOESY data.

■ RESULTS AND DISCUSSION

With the aim of assessing the adequacy of the EDR-MCR
approach relative to other supervised learning processes, the
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four data sets were subjected to other data splitting and
discrimination methods. The data sets were divided into
training and test sets using independent IRS (100 iterations),
KS, and EDR step 1-1 methods and then discriminated by
PLS-DA and error-correcting output code (ECOC) multiclass
models47 using LDA, KNN, CART, and SVM. Details on the
strategies taken for data set preprocessing, parameter setting,
and methods comparison are discussed in the strategies for
comparison of different methods section in the Supporting
Information.
Benchmark Data Set. Two publicly available and well-

established benchmark data sets which have been used
previously to test machine learning approaches were analyzed.
The benchmark data sets have dimensions of 150 × 4 for the
iris and 178 × 13 for the wine. The FreeVis plots48,49 in Figure
S2 enable visualization of the results of projection of iris (panel
A) and wine (panel B) multivariate data in 2D space. The blue,
red, and green colors, respectively, correspond to I. setosa, I.
versicolor, and I. virginica classes in the iris data set and to the
Group 1, Group 2, and Group 3 classes in the wine data set,
respectively. According to Figure S2-A, sepal length has less of
an impact on discrimination of iris plant species when
compared with the other features. In Figure S2-B, the ash
and magnesium features have low weights in terms of
discrimination of the wine data set. As expected, total phenols
and proanthocyanins are highly correlated with flavonoids and
hue, respectively.
Iris Data Set Data Reduction. Six of the samples were

identified to be outliers based on three principal components.

Sample Selection. After removing outliers, the data were
categorized into training/test samples (19/125, 99/45, and
101/43 using EDR, KS, and IRS, respectively). The details for
the samples in each class are displayed in Tables S1−S3.
Two, three, and three PCs were found to be important for

defining the PCA space of samples belonging to I. setosa, I.
versicolor, and I. virginica, respectively. The dimensions of the
normalized PCA space used for calculation of the convex space
were 1, 2, and 2 for I. setosa, I. versicolor, and I. virginica,
respectively, as shown in Figure 1A−C. For class I. setosa
(Figure 1A), the data points merged along a straight line in
which the two extreme data points (indicated by stars in Figure
1A) defined the training samples. Thus, only two samples
defined the set for this class. The vertices of the two resulting
2-D convex spaces which defined the training samples for
classes I. versicolor and I. virginica (shown in Figure 1B and C,
respectively, are illustrated with stars).

Variable Selection. All four variables were selected to be
important using step 1-2 of the EDR method, as they define
the vertices of the convex hull in the normalized 2D space
(shown in Figure 1D), which was obtained from implementa-
tion of PCA on the training sets of all three classes resulting
from EDR.

Wine Data Set Data Reduction. The results of the
application of EDR to the wine data set are presented in
Figure S3. Of the 178 samples (based on the three principal
components), 13 were found to be outliers and were removed
before analysis.

Sample Selection. On application of EDR, 59 samples (7
group 1, 32 group 2, and 20 group 3) and 106 samples (51

Figure 1. Results of the application of EDR (A−D) and MCR (E, F) in the analysis of the iris flower data set. The blue stars in panels A−C define
the extreme points of the convex line in case A and the vertices of the convex hull in cases B and C and represent the coordinates of the samples
that were selected as important and as training samples. The circles, color coded by species, represent those samples at the interior of the convex
space that were selected as test samples. The blue stars in panel D represent the vertices of the convex hull in the loading space and therefore the
coordinates of the important variables. (A) Score plot illustrating the convex line in normalized 1-D space generated by EDR for the selection of the
optimal training and test samples for I. setosa. Normalization of the two PCs that explained 99% of the data variance resulted in the 1-D plot. (B)
Score space obtained from PCA analysis showing the convex hull which, following normalization, revealed the training/test samples for I. versicolor.
(C) Score space resulting from PCA analysis showing the computed convex hull which, following normalization, revealed the test/training samples
for I. virginica. (D) Loading space derived from PCA analysis showing the convex hull which, following normalization, revealed the important
discriminative variables for the whole iris flower data set. (E) Three profiles that were revealed by the application of MCR on the reduced data
which resulted from EDR. The top plot defines the class profile for I. setosa. The middle plot defines the class profile for I. versicolor. The bottom
plot defines the class for I. virginica. The red dashed lines in the plots display the threshold (at 0.5) that was used for class assignment. (F)
Illustration of the weight profiles resulting from MCR that were normalized to show the relative differences between the weights of each variable for
each class.
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group 1, 29 group 2, and 26 group 3) were extracted for the
training and test sets, respectively, using the first three PCs
resulting from PCA on the logarithm-transformed data in each
class. The data were divided into training/test samples for each
class (114/51 and 116/49 using KS and IRS, respectively) and
are shown in Tables S4−S6.
Variable Selection. The three PCs corresponding to PCA

analysis of the training set derived from step1-1 of EDR were
used for variable selection. Eight variables (i.e., malic acid, ash
alkalinity, magnesium, flavonoids, color intensity, hue, the
OD280/OD315 of diluted wines, and proline) coincided with
the vertices of the convex hull, while the total phenols and
nonflavonoid phenols and the proanthocyanins, which are
correlated with flavonoids and hue, respectively, did not. This
is consistent with the FreeVis plot results (Figure S2).
Classification. MCR was performed to resolve the iris and

wine data sets (using three and four MCR components,
respectively). Figure 1E and F, along with Figure S3 illustrate
the scaled class and weight profiles which resulted from the
application of MCR to the iris and wine data sets, respectively.
The samples belonging to the training and test sets are shown
as color-coded circles and stars. Each row of the C matrix
corresponds to a sample. The column position of values >0.5
in a row of matrix C was considered as the criterion that
defined the class of samples corresponding with that row. The
weight profiles show different weights for petal width and petal
length variables on the class profiles for each species and

illustrate their impact on the classification of each species.
Table 1 contains the accuracy, overall sensitivity, specificity,
and precision and F1-score merits of the trained EDR-, KS-,
and IRS- MCR, PLS-DA, and the following multiclass ECOC
models using the classifiers: regularized LDA, CART, KNN,
and SVM for the iris and wine data sets. The details regarding
the parameters and the sensitivity, specificity, and precision of
each class can be found in Tables S1−S3 for the iris data set
and in Tables S4−S6 for the wine data. The confusion matrices
for prediction of test samples are displayed in Appendices S1A-
C and S2A-C for the iris and wine data sets, respectively. The
results show that EDR and MCR compare favorably with other
powerful and well-accepted data splitting and pattern
recognition methods. If an accuracy of the model of ≥0.9
and a true positive rate (sensitivity) for each class of ≥0.8 are
considered as the criteria for assessment of model perform-
ance, then all the methods except for EDR-CART perform well
for discrimination of the wine data set. IRS-MCR, EDR-SVM,
CART, and LDA do not generate well-fitting models for the
iris data set.

Nightshade Data Set. In addition to the benchmark data
sets, the EDR-MCR approach was also applied to high-
dimensional DART-HRMS data that was acquired from
analysis of the seeds of 24 psychoactive plant species from
the nightshade family. Species-level discrimination of these
plants is of importance in agricultural, medicinal, and forensic
contexts. In our previous work,39 a two-level hierarchical

Table 1. Performance Merits of Various Discrimination Methods Including Accuracy, Overall Sensitivity, Specificity, and
Overall Precision and F1-Score for Discrimination of Iris, Wine, Nightshade, and CRC Data Setsa

aSensitivity, specificity, and precision of each class are displayed in Tables S1−S6, S11−S13, S18−S20, and S25−S30. Confusion matrices for test
set prediction are shown in Appendixes S1−S4. Error rate: 1, accuracy. False positive rate: 1, specificity. False negative rate: 1, sensitivity.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.0c01427
Anal. Chem. 2021, 93, 5020−5027

5024

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c01427/suppl_file/ac0c01427_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c01427/suppl_file/ac0c01427_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c01427/suppl_file/ac0c01427_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c01427/suppl_file/ac0c01427_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c01427/suppl_file/ac0c01427_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c01427/suppl_file/ac0c01427_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c01427/suppl_file/ac0c01427_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01427?fig=tbl1&ref=pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c01427/suppl_file/ac0c01427_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.0c01427/suppl_file/ac0c01427_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c01427?fig=tbl1&ref=pdf
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.0c01427?rel=cite-as&ref=PDF&jav=VoR


classification tree, inspired by the known taxonomic relation-
ships between the represented plant species, was designed to
categorize the plant samples first by genus and subsequently by
species. In each node of the classification tree, subwindow
permutation analysis (SPA) and PLS-DA were applied to the
data for variable selection and discrimination, respectively. The
applied method increased the accuracy of 100 × bootstrap
validation to 95% compared to 84% for a flat 24-classs
problem. The number of variables used for discrimination of
the plant samples by genus was identified to be 170, and the
number of variables for categorizing the Atropa, Brugmansia,
Datura, Hyoscyamus, and Mandragora genera into the
represented species were 40, 50, 80, 30, and 15, respectively.
In this study, the data set was analyzed as a 24-class problem,
without considering class hierarchy. Representative training
sets were selected using EDR, KS, and IRS and were
determined to be 109, 170, and 176 in number, respectively.
The training/test sets for each class are shown in Tables S7,
S14, and S21. For EDR, all of the samples for species B.
versicolor and H. Pusillus were recognized as training sets, and
there were no test samples designated for these two species.
From step 1-2 of EDR, 13 PCs (which explained 90% of the
data variance) were used to create the shared space between
classes, and, based on the created convex hull vertices, 56 m/z
values were sufficient to define the bounded subspace. The m/
z values displayed in Table S7, which included the biomarkers
m/z 290.1726 (i.e., atropine) and 304.1571 (i.e., scopolamine)
were among those selected. Twenty-three of these were
identical to the high-impact variables identified in the previous
study.39 Therefore, the variables of the training and test sets
were reduced to 56 and subjected to machine learning
methods for generation of the classification models. Table 1
contains the figures of merit for the trained EDR-, KS-, and
IRS-PLS-DA, MCR, and the following multiclass ECOC
models for test prediction: regularized LDA, CART, KNN,
and SVM. For the MCR method, samples were assigned to
classes, with a class profile threshold of <0.4.
The details associated with the optimized parameters,

confusion matrix, and performance merits, i.e., sensitivity,
precision, and specificity of each class for predicting training
and test sets, appears in Appendices S3A−S3C and Tables S7−
S27. Figure S4 displays the projected features of the matrices
(with the training and test sets indicated using circle and star
symbols, respectively) in the 2-D space of a t-distributed
stochastic neighbor embedding (t-SNE) plot.50 Utilization of
the neighbor-embedding technique preserves the pairwise
similarities (by considering the “cosine” similarity metric) of
the data points of neighbors by minimizing the divergence of
similarity distributions between neighbors and embedding the
points in a 2-D space. Figures S4A and B show projection plots
for the raw data and EDR variable reduced data, respectively.
Although they reveal the presence of clusters, there is no clear
discrimination between the color-coded classes. Figure S4C
illustrates the projection, on a t-SNE space, of the scaled class
profiles that are resolved from application of MCR. Twenty-
four MCR components were applied for resolving the
nightshade data set. Visual assessment of the results reveals
that the MCR model performs very well in resolving class
profiles of nightshade family species, as demonstrated by the
apparent separation of classes in Figure S4C. According to
Table 1, when the data splitting is based on the EDR strategy,
KNN and CART perform similarly in terms of F1-score,
overall sensitivity, and accuracy, but their performance is lower

than that for the other methods. By these same metrics, MCR
outperforms LDA, PLS-DA, and SVM methods. With the
exception of the CART method, the discrimination methods
exhibit similar performance when the training set is selected
using the KS method. For the training set selected by IRS, the
MCR and SVM models have similar and better performances.
However, since accuracy, overall sensitivity, and F1-score alone
are typically not enough to decide on the suitability of a
classifier, the other performance characteristics such as
sensitivity, specificity, and precision of each class were also
considered. The results for test set prediction are shown in
Tables S11−S13, S18−S20, and S25−S27 and reveal that the
true positive rate (sensitivity) of each class is zero for A.
komarovii, D. quercifolia, and H. niger using EDR-KNN; B.
sanguinea and D. quercifolia using EDR-CART; D. inoxia using
KS-KNN; B. suaveolens and D. discolor using KS-CART; and B.
arborea using KS-SVM. The true positive rate was also zero for
A. komarovii, D. quercifolia, and H. niger in prediction of the
training set using EDR-KNN. In addition, the fit was poor for
some of the species when discriminated with EDR-SVM, LDA,
and PLS-DA and IRS-KNN, CART, LDA, PLS-DA, SVM, and
MCR, as the true positive rates of those classes in test set
prediction were as low as <0.5. On the other hand, EDR-MCR
properly predicted all of the species. This demonstrates that
MCR exhibits good classification performance even with a
small number of samples (i.e., two) and the presence of class
imbalances.
We conclude that the utilization of both training and test

sets to generate the MCR model, which allows consideration of
test set information, confers on MCR the ability to better train
classes with only two samples. The resolved and scaled weight
profiles are demonstrated for 24 species in Figures S5−S9.
Each weight profile is related to one species and shows the
impact of the indicated m/z values on separation of that class
from the others. For example, in the Atropa genus, m/z
304.1571 does impact the distinction of A. belladonna from the
two other represented species A. beatica and A. komarovii. As
another example featuring the Brugmansia genus, m/z 291.17 is
heavily weighted for the B. aurea species, while it has no impact
in the feature space of the four other species.

CRC Data Set. The EDR-MCR method was applied to
high-dimensional two-class NMR data derived from analysis of
94 human blood plasma samples from donors with and
without colorectal cancer.40 In previous reports, this data was
analyzed following its fusion with fluorescence spectroscopy
data,40,51 and in one study51 in which the CRC samples were
clustered using an unsupervised data fusion model, 71.4%
accuracy with 63.6% sensitivity and 78.1% specificity were
achieved. Using EDR, KS, and IRS, 57, 66, and 66 samples,
respectively, were selected as training sets. In EDR, five and six
principle components which explained 99.9% of the data
variance for the cancer and noncancer samples, respectively,
resulted in 33 and 24 training set samples for the cancer and
noncancer samples, respectively. Six principal components
defined the shared space of the training sets and revealed 10
important variables. The results for the evaluation of machine
learning methods and MCR for distinguishing between
cancerous and noncancerous samples are displayed in Table
1. The optimal parameters for the PLS-DA and ECOC models
and performance specifications for each class are shown in
Tables S28−S30. The confusion matrix associated with the
prediction of test samples is shown in Appendices S4A−S4C.
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Two MCR components were found to be optimal for sample
discrimination.
The results in Table 1 and Figure S10 illustrate that the

EDR-MCR model performed well in comparison with the
other methods and published literature report.51 The EDR-
MCR discrimination model performed well and resulted in
78% accuracy with 71% sensitivity and 83% specificity in
distinguishing between CRC samples. On the basis of Figure
S10, two variables (i.e., Var 1 and Var 8) of the 10 selected
variables have the most impact on the ability to distinguish
between cancer and noncancer samples. According to Tables
S28−S30, in comparison, EDR-CART, KS-KNN, KS-CART,
and IRS-MCR show relatively good performance and have a
sensitivity and specificity of >0.60.
The analysis results for the four data sets illustrate that the

EDR-MCR method is highly suitable for supervised learning
tasks. It is noteworthy that the results of the application of
MCR are affected by rotational ambiguity, which means that
there is a set of solutions that fit the data and fulfill the
constraints equally.52,53

Generally, the non-negativity constraint is a robust approach
that results in a reduced number of feasible solutions. As such,
its application to several systems is a sufficient condition to
resolve profiles uniquely.54 In discriminative analysis in
general, implementation of the non-negativity constraint for
the MCR method involves the application of the accessible
information about most of the chemical system, and this results
in a reduced number of feasible solutions which have positive
values in their class and weight profiles. Overall, the application
of the non-negativity constraint has a significant effect in terms
of reduction of the number of feasible solutions in cases where
the application of the equality constraint does not result in a
unique solution. Implementing equality, correlation, and
known value constraints can result in unique solutions for
specific conditions.28,29,34 In the present work, implementation
of the equality constraint (for introducing class label
information into the MCR process) resulted in unique
solutions relating to the similarity of the training and test
sample spaces. Further investigation into the conditions
necessary for obtaining unique solutions when the MCR
method is used for discriminant analysis and classification are
the subject of ongoing investigations in our laboratories.

■ CONCLUSIONS
A novel approach termed EDR-MCR was developed for
multiclass classification of high-dimensional data. The method
introduces the coupling of EDR and MCR as a new strategy for
data splitting, variable selection, and supervised classification of
high dimensionality data. In comparison with investigated data
splitting and classification methods, EDR-MCR exhibited
better performance in the classification of the two high-
dimensional data sets analyzed (i.e., the CRC and nighshade
plant data sets). EDR-MCR has the potential to be used both
as a one class classifier and also as a discrimination analyzer.
EDR provides a simple method to reduce the data using the
most dominant samples and variables. The results show that
EDR exhibited results that were comparable to those of other
data splitting methods, and in comparison with other data
splitting methods, EDR in combination with MCR has better
performance and results in a functional model even when used
with a limited number of training samples. While multivariate
curve resolution tasks are well known to analytical chemists,
the approach presented here has not been reported for

classification and discrimination tasks. Described here for the
first time is a method for classification and discrimination that
takes advantage of important features of the MCR technique in
order to accomplish classification and discrimination. In
comparison with other classification methods, MCR offers
the added advantages of (1) speed, (2) tuning of fewer
parameters and simplicity of tuning, (3) flexibility in the
analysis of data sets that is characterized by low sample
numbers and class imbalances, (4) improved accuracy from
inclusion of additional information about the system in the
form of a numerical constraint, and (5) pure component signal
weights that result from bilinear decomposition and which are
useful for revealing a given variables’ impact. This approach
can be readily applied to a broad range of data types. Future
studies will explore additional examples of the application of
the conceptual framework developed in this work to the
classification of a diversity of types of data.
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